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Abstract
Metabolites of proper fatty acids modulate the inflammatory response and are essential for normal brain development; equally,
abnormal fatty acid metabolism plays a critical role in the pathology of autism. Currently, dietary supplements are often used to
improve the core symptoms of Autism spectrum disorder (ASD). The present study analyzed the effects of orally supplemented
omega-3 (ω-3) and vitamin B12 on ameliorating oxidative stress and impaired lipid metabolism in a propionic acid (PPA)-
induced rodent model of autism, together with their effect on the gut microbial composition, where great fluctuations in the
bacterial number and strains were observed; interestingly, polyunsaturated fatty acids such as omega-3 induced higher growth of
the gram-positive bacterium Staphylococcus aureus and decreased the survival rates of Clostridia sp. as well as other enteric
bacterial strains. Thirty-five young male western albino rats were divided into five equal groups. The first group served as the
control; the second group was given an oral neurotoxic dose of PPA (250 mg/kg body weight/day) for 3 days. The third group
received an oral dose ofω-3 (200 mg/kg body weight/day) for 30 days after the 3-day PPA treatment. Group four was given an
oral dose of vitamin B12 (16.7 mg/kg/day) for 30 days after PPA treatment. Finally, group five was given a combination of both
ω-3 and vitamin B12 at the same dose for the same duration after PPA treatment. Biochemical parameters related to oxidative
stress and impaired fatty acid metabolism were investigated in the brain homogenates of each group. The effects of the dietary
supplements on the gut microbiota were also observed. The PPA-treated autistic model expressed significantly higher levels of
lipid peroxides and 5-lipoxygenase (5-LOX) and significantly less glutathione (GSH), glutathione S-transferase (GST), and
cyclooxygenase 2 (COX2) than the control group. However, a remarkable amelioration of most of the impaired markers was
observed with oral supplementation with ω-3 and vitamin B12, either alone or in combination. Our results concluded that
impairment at various steps of the lipid metabolic pathways may contribute to the development of autism; however, supplemen-
tation withω-3 and vitamin B12 can result in a positive therapeutic effect.

Keywords Omega-3 . Vitamin B12 . Oxidative stress . Lipid metabolism . Gut microbiota

Introduction

Animal models are usually used to test pathological mechanisms
of disease and to suggest potential treatments targeting the af-
fected metabolic pathways. Although autism affects humans,
animal models of this disorder can help uncover the etiology of
autism and test therapeutic agents (Erdogan et al. 2017).
MacFabe et al. (2007) and El-Ansary et al. (2012) proposed that
brain infusion or oral administration of propionic acid (PPA) to
rat pups could induce many of the biochemical traits seen in
individuals with autism. Moreover, histopathological changes,
such as neuronal loss, hyaline bodies, and astrogliosis, together
with several behavioral traits, such as hyperactivity, impaired
social interaction, reduced exploratory activity, and increased

* Afaf El-Ansary
afafkelansary@gmail.com; elansary@ksu.edu.sa

1 Department of Food Science and Human Nutrition, King Saud
University, Riyadh, Saudi Arabia

2 Biochemistry Department, Science College, King Saud University,
Riyadh, Saudi Arabia

3 Department of Pharmaceutics, College of Pharmacy, King Saud
University, Riyadh, Saudi Arabia

4 Central laboratory, Female Centre for Scientific andMedical Studies,
King Saud University, Riyadh, Saudi Arabia

5 Botany and Microbiology Department, College of Science, King
Saud University, P.O box 22452, Riyadh Zip code 11495, Saudi
Arabia

Journal of Molecular Neuroscience
https://doi.org/10.1007/s12031-018-1186-z

http://crossmark.crossref.org/dialog/?doi=10.1007/s12031-018-1186-z&domain=pdf
http://orcid.org/0000-0002-1404-5248
mailto:afafkelansary@gmail.com
mailto:elansary@ksu.edu.sa


repetitive behaviors, have been recorded (MacFabe et al. (2007);
Khalil et al. 2015; Daghestani et al. 2017). Pathogenic overpro-
duction of PPA in autism by Propionibacteria, such asClostridia
species, is well documented to contribute to the etiologicalmech-
anism of autism (Finegold et al. 2017; Fluegge 2017; Ding et al.
2017), supporting the use of PPA in the creation of an animal
model of autism.

Increased oxidative stress has been repeatedly postulated to
contribute to the etiology of autism (El-Ansary et al. 2017;
Khemakhem et al. 2017; Meguid et al. 2017; Yui et al.
2017). Autistic patients and animal models of autism are re-
ported to exhibit elevated lipid peroxidation and decreased
expression of detoxifying agents (e.g., glutathione) and
antioxidants involved in the defense system against re-
active oxygen species (ROS). Moreover, a positive cor-
relation between reduced levels of antioxidants or ele-
vated ROS and autism severity has been recorded (Chauhan
and Chauhan 2006; Khalil et al. 2015; Kałużna-Czaplińska
and Jóźwik-Pruska 2016).

In relation to oxidative stress, there is emerging evidence
that fatty acid metabolism and homeostasis are impaired in
autism, which might be due to dietary insufficiency and ab-
normalities in fatty acid-metabolizing enzymes (Ming et al.
2005). Abnormal fatty acid metabolism is well documented
to affect normal brain function, especially during develop-
ment. Indeed, a direct relationship between impaired fatty acid
metabolism at various sites and the pathophysiology of autism
has been repeatedly documented (Chauhan et al. 2004; James
et al. 2004). The disturbance of the gut microbial composition
due to both impaired fatty acid intake and/or metabolism have
been observed (Bakken et al. 2011). The gut consists of mil-
lions of microbiota which together with its metabolites might
be involved in the pathophysiology of autism. Accumulating
evidences showed modulation of the gut microbiota is a po-
tential therapy in treating autism. Several articles have
reviewed the influence of the gut microbiota on the animal
central nervous system (CNS) and suggested the existence
of a microbiota gut-brain axis (Bienenstock et al. 2015;
Mayer et al. 2015) which can be greatly affected by dietary
intake (Wu et al. 2011). Herstad et al. (2017) reported that
higher dietary fat intake greatly influence the gut bacterial
composition mainly by increased bile acid secretion.
Omega-3 fatty acids, on the other hand, exhibited significant
improvements in social behaviors when administered for
12 weeks (Ooi et al. 2015) and most efficient at increasing
survival and decreasing bacterial loads (Svahn et al. 2016).

COX-2 has been widely studied as an important enzyme
that plays a critical role in polyunsaturated acid (PUFA) me-
tabolism. COX-2 is highly expressed in tissues under inflam-
matory or neurotoxic stress.ω-3 has been shown to effective-
ly modulate the high expression of COX-2, in addition to its
ability to control theω-6 PUFA level (Boudrault et al. 2010).
5-LOX is an iron-containing dioxygenase that catalyzes the

addition of oxygen to polyunsaturated fatty acids (PUFAs)
such as arachidonic acid (Shimizu and Wolfe 1990). 5-LOX
has been shown to play important roles in human pathology
through its central role in leukotriene biosynthesis.
Leukotrienes, as important lipid mediators, are active in low
concentrations and induce immunomodulatory and proinflam-
matory effects. Inhibition of the expression or activity of 5-
LOX has been shown to ameliorate neuroinflammation, re-
store normal synaptic plasticity, and improve learning and
memory function in depressed rats (Luo et al. 2016).

Das et al. (2003) suggested that adequate prenatal and
pos tna t a l l eve l s o f va r iou s PUFAs , e spec i a l l y
docosahexaenoic acid (DHA), anω-3 fatty acid, are essential
for the growth and development of the brain and effective at
improving cognitive function. ω-3 is well accepted to be
needed for the appropriate growth and development of the
brain and proper synapse formation, as well as to improve
cognitive function. Vit. B12 deficiency is usually concurrent
with folate deficiency, which contributes to neurological ab-
normalities and birth defects (Saghiri et al. 2017). Vit. B12

deficiency is also inversely proportional to the homocysteine
level, which is a known modulator of lipid metabolism. Vit.
B12 supplementation has been associated with the normaliza-
tion of the Hcy level and amelioration of impaired lipid me-
tabolism (Jankowska et al. 2017). Indeed, human gut mi-
crobes are likely to present direct competition with their
host for Vit. B12 (Degnan et al. 2014). Notably, indi-
viduals with high bacterial loads in their small intestines tend
to have low Vit. B12 status (Albert et al. 1980; Brandt et al.
1977; Murphy et al. 1986).

Based on the fact that oxidative stress, impaired lipid me-
tabolism, and decreased levels ofω-3 and Vit. B12 have been
shown to be associated with the etiological mechanism of
neuropsychiatric disorders (Hunaiti 2016), testing the effects
of oral supplementation withω-3 and Vit. B12 on ameliorating
oxidative stress and lipid metabolic defects in a rodent model
of autism induced by PPA neurotoxicity and identifying the
involved enzymes are necessary for evaluating the use ofω-3
and Vit. B12 as a novel therapy but also by mediating funda-
mental biological processes in microbes, representing as such
an attractive target for reshaping microbial communities.

Material and Methods

Animals A total of 35 young male western albino rats (80–
120 g) were obtained fromKing Saud University Riyadh. Rats
were randomly allocated to the following groups. The control
group was given only phosphate-buffered saline. The oral
buffered PPA-treated group (n = 7) was given a neurotoxic
dose of PPA at 250 mg/kg body weight/day for 3 days (El-
Ansary et al. 2012). The omega-3-treated group (n = 7) was
orally givenω-3 at a dose of 200 mg/kg body weight/day for
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30 days after the 3-day PPA treatment (Abdou and
Hassan 2014). A third group of seven rats was given
Vit. B12 (16.7 mg/kg/day) for 30 days after the 3-day
PPA treatment (Abdulmajeed et al. 2015). A fourth
group was given a combination of ω-3 and Vit. B12

for the same duration post PPA treatment. All groups
were housed at a controlled temperature (21 ± 1 °C)
with ad libitum access to food and water. All experi-
ments were performed in accordance with national ani-
mal care guidelines and were pre-approved by the faculty
ethics committee of King Saud University.

Ethics Approval All animal experiments were conducted with
the approval of King Saud University.

Sample Collection

Brain TissueWhole-brain tissue was collected and washed
with cold normal saline and then homogenized in ten
volume/weight of double distilled water. The homoge-
nate was then centrifuged at 3000 rpm for 10 min. The
resulting supernatant was used for various biochemical
assays.

Fecal Sample Collection

The fecal pellets were collected in sterile containers from all
the groups in study before and after treatment in the early
morning and were immediately stored at − 80 °C for
the microbiological analysis.

Biochemical Analyses

1. Spectrophotometric analysis
Lipid oxidation was estimated by the formation of thio-

barbituric acid reactive substances (TBARS) by the meth-
od of Ruiz-Larrea et al. (1994). A vitamin C assay was
performed according to the method of Jagota and Dani
(1982). GSH was assayed by the method of Beutler
(1963), using 5,5′-dithiobis 2-nitrobenzoic acid (DTNB)
with sulfhydryl compounds to produce a relatively stable
yellow color. GST activity was assessed by the method
described by Habig et al. (1974) based on the GST-
catalyzed reaction between GSH, the GST substrate, and
CDNB (1-chloro-2,4-dinitrobenzene).

2. ELISA analysis
Levels of phospholipase A2 and COX2were measured

using kits based on the sandwich ELISA principle, prod-
ucts of LSBio (Lifespan BioScience, Inc., North
America), with a detection range of 3.12–200 and
0.156–10 ng/ml, respectively.

Levels of leukotriene B4 and prostaglandin E2 were
measured using ELISA kits based on the competitive as-
say used for quantitative estimation, products of Cayman
chemical (Cayman chemical company Ann Arbor, MI,
USA), with a detection range of 3.9–500 and 7.8–
1000 pg/ml, respectively.

Microbiological Analyses

Fecal Collection and Analysis

One gram of each fecal sample collected from each of the
assigned groups in this study (control group, PPA group, ω-3,
Vit. B12 andω-3 +Vit. B12) was homogenized in 10 ml sterile
PBS solution (0.1 M, pH 7.2) using a sonicator for 30 s. The
fecal solutions were then centrifuged at 5400 rpm for 3 min at
4 °C. Then, 1 ml of the fecal supernatant was serially diluted in
9 ml sterile PBS solution four times (Zhang et al. 2014).

Bacterial Culturing and Enumeration

Here, 100μl of each of the prepared dilutions for every group of
treated mice was plated on panel plates including nutrient agar
(NA, Oxoid) plates, MacConkey (MAC) plates, blood agar
(Bld) plates, and plates containing CCFA medium selective for
Clostridia. The selective medium CCFA plates were incubated
in an anaerobic jar with 5%CO2 at 37 °C for 3 days, whereas the
other culture media previously mentioned were incubated at
37 °C under aerobic conditions for 18–24 h. The experiment
was repeated twice. The colony count per plate was recorded
and tabulated as the average of the number of bacteria per plate.

Distinct colony types from each media used were selected,
isolated, and purified on NA plates for preliminary identifica-
tion, either microscopically through gram staining or through
the use of different biochemical tests and selective media,
namely eosin-methylene blue (EMB), the selective medium
for the identification of E. coli; data not shown.

Statistical Analysis

The results of the present study were expressed as the means ±
S.D. All statistical comparisons between the control group and
the PPA, ω-3, B12, and, ω-3 + B12-treated rat groups were
performed using one-way analysis of variance (ANOVA) tests
with Dunnett’s test for multiple comparisons. Statistical
Package for the Social Sciences (SPSS, Chicago, IL, USA)
was used for the statistical analyses. Significance was
assigned at the level of P < 0.05. Receiver operating charac-
teristic (ROC) curve analysis was also performed. The area
under the curve (AUC), the degrees of sensitivity and speci-
ficity, and cutoff values were calculated. Pearson’s correla-
tions were performed between the measured parameters.
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Results

Table 1 and Fig. 1 show the mean ± S.D. and the percentage
change in the measured parameters in the five groups studied.
PPA treatment induced a significant elevation in lipid

peroxides, with an 11.72% increase, and 5-LOX, with a
100.62% increase, compared to control. On the other hand,
PPA-treated rats expressed GSH, GST, and COX2 at a much
lower level than control rats, showing a 22.65, 10.35, and
20.14% decrease, respectively. The ascorbic acid, leukotriene

Table 1 Mean ± S.D. of the
measured parameters in the five
studied groups

Parameter Group Mean ± S.D. Percent change P valuea

Lipid peroxides Control 0.50 ± 0.02 100.00

PPA 0.56 ± 0.02 111.72 0.003

PPA +ω-3 0.51 ± 0.05 103.21 0.712

PPA +B12 0.48 ± 0.03 96.33 0.609

PPA +ω-3 + B12 0.55 ± 0.03 110.38 0.010

Ascorbic acid Control 25.83 ± 1.40 100.00

PPA 24.02 ± 1.08 92.99 0.663

PPA +ω-3 23.61 ± 2.76 91.43 0.500

PPA +B12 26.40 ± 5.53 102.22 0.991

PPA +ω-3 + B12 24.40 ± 2.90 94.48 0.813

GSH Control 93.15 ± 3.27 100.00

PPA 72.06 ± 3.50 77.35 0.001

PPA +ω-3 92.87 ± 1.81 99.69 1.000

PPA +B12 100.05 ± 4.35 107.41 0.004

PPA +ω-3 + B12 94.06 ± 4.24 100.98 0.969

GST Control 200.38 ± 23.11 100.00

PPA 179.65 ± 18.20 89.65 0.047

PPA +ω-3 159.13 ± 8.36 79.41 0.001

PPA +B12 138.27 ± 2.53 69.00 0.001

PPA +ω-3 + B12 171.44 ± 12.85 85.56 0.004

5-LOX Control 293.88 ± 46.28 100.00

PPA 589.59 ± 126.69 200.62 0.001

PPA +ω-3 402.66 ± 65.13 137.01 0.029

PPA +B12 260.00 ± 34.58 88.47 0.794

PPA +ω-3 + B12 298.14 ± 50.52 101.45 1.000

COX2 Control 81.66 ± 6.50 100.00

PPA 65.21 ± 5.24 79.86 0.005

PPA +ω-3 77.41 ± 7.17 94.79 0.766

PPA +B12 76.51 ± 8.00 93.69 0.634

PPA +ω-3 + B12 77.05 ± 13.72 94.35 0.715

Leukotriene B4
(pg/g brain tissue)

Control 404.55 ± 9.39 100.00

PPA 391.82 ± 12.40 96.85 0.754

PPA +ω-3 366.56 ± 29.25 90.61 0.030

PPA +B12 381.33 ± 4.60 94.26 0.274

PPA +ω-3 + B12 393.91 ± 45.72 97.37 0.847

Prostaglandin E2
(pg/g brain tissue)

Control 267.42 ± 51.26 100.00

PPA 244.75 ± 4.45 91.52 0.313

PPA +ω-3 239.87 ± 8.25 89.70 0.169

PPA +B12 233.53 ± 8.68 87.33 0.067

PPA +ω-3 + B12 231.76 ± 24.02 86.66 0.051

Table 1 shows the results of the one-way ANOVA test between all groups with a multiple comparisons test
(Dunnett test) to compare each group with the control group in all parameters
aP value between each group and the control group
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B4, and prostaglandin E2 levels did not change significantly
with PPA treatment. The same table and figure illustrate the
remarkable amelioration of most of the changes in marker
expression with ω-3 and Vit. B12 treatment, both indepen-
dently and in combination, to varying degrees.

Table 2 contains the Pearson’s correlation coefficients be-
tween the measured parameters (Fig. 2). The lipid peroxide
level, as a measure of oxidative stress, was negatively corre-
lated with GSH expression (P ˂ 0.003) and positively corre-
lated with 5-LOX (P ˂ 0.049). GSH was negatively correlated
with GST (P < 0.007) and 5-LOX (P < 0.001) and positively

correlated with COX 2 (P ˂ 0.001). 5-LOX was negatively
correlated with COX2 (P ˂ 0.029).

Table 3 presents the cutoff values, AUC, sensitivity, and
specificity of each of the measured parameters for the PPA-
treated group and the PPA-treated groups supplemented
with either ω-3 and Vit. B12 independently or in com-
bination (ω-3 + Vit. B12). Most of the measured param-
eters exhibited satisfactory AUCs, specificity, and sensi-
tivity as a marker of PPA neurotoxicity and/or the therapeutic
effect of ω-3 and Vit. B12.

Fecal bacterial analysis from each of the animal groups in
the study was performed and tabulated as an average of the
bacterial count per plate. Data were compared between the
groups before and after treatment with the different doses of
ω-3, Vit. B12., and both after PPA intake. Multiple bacterial
strains were identified from the fecal matter in the control
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Fig. 1 Percentage change in all parameters in all groups compared
to control

Table 2 Pearson’s correlation
coefficients between the
measured parameters

Parameters R (Pearson’s correlation coefficient) Sig.

Lipid peroxides with GSH − 0.442** 0.003 a

Lipid peroxides with 5-LOX 0.306* 0.049 b

GSH with GST − 0.409** 0.007 b

GSH with 5-LOX − 0.804** 0.001 b

GSH with COX2 0.488** 0.001 a

GST with leukotriene B4 0.400** 0.009 a

5-LOX with COX2 − 0.338* 0.029 b

***Correlation is significant at the 0.05 level; correlation is significant at the 0.01 level
a Positive correlation
bNegative correlation

Fig. 2 Collective Pearson’s positive and negative correlations between
the measured variables
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group, with the absence of Clostridia growth (Table 4); how-
ever, 1 Clostridium sp. colony was observed on the plate with
the CCFA medium, a selective medium that characteristically
labels Clostridia with yellow fluorescence, following PPA

intake, which in turn caused a decrease in the bacterial number
compared to that in the control group, with a bacterial count of
100 and 300 in the PPA and control group, respectively
(Table 4).

Table 3 ROC-curve of all parameters in all groups

Parameter Group AUC Cutoff value Sensitivity % Specificity % P value

Lipid peroxides PPA 0.990 0.515 100.0% 85.7% 0.002

PPA +ω-3 0.602 0.530 42.9% 100.0% 0.523

PPA +B12 0.694 0.485 57.1% 85.7% 0.225

PPA +ω-3 + B12 0.990 0.515 100.0% 85.7% 0.002

Ascorbic acid PPA 0.837 24.865 85.7% 85.7% 0.035

PPA +ω-3 0.724 24.605 71.4% 85.7% 0.160

PPA +B12 0.510 26.755 42.9% 85.7% 0.949

PPA +ω-3 + B12 0.714 25.260 71.4% 71.4% 0.180

GSH PPA 1.000 82.290 100.0% 100.0% 0.002

PPA +ω-3 0.510 96.400 100.0% 28.6% 0.949

PPA +B12 0.878 94.402 100.0% 71.4% 0.018

PPA +ω-3 + B12 0.633 93.432 71.4% 71.4% 0.406

GST PPA 0.837 198.650 100.0% 71.4% 0.035

PPA +ω-3 0.939 179.100 100.0% 85.7% 0.006

PPA +B12 1.000 149.650 100.0% 100.0% 0.002

PPA +ω-3 + B12 0.878 187.100 100.0% 85.7% 0.018

5-LOX PPA 1.000 385.885 100.0% 100.0% 0.002

PPA +ω-3 0.939 336.655 100.0% 85.7% 0.006

PPA +B12 0.735 277.595 71.4% 71.4% 0.142

PPA +ω-3 + B12 0.531 281.305 71.4% 42.9% 0.848

COX2 PPA 1.000 73.291 100.0% 100.0% 0.002

PPA +ω-3 0.653 77.479 71.4% 71.4% 0.338

PPA +B12 0.653 77.251 71.4% 71.4% 0.338

PPA +ω-3 + B12 0.612 70.453 42.9% 100.0% 0.482

Leukotriene B4 (pg/g brain tissue) PPA 0.796 397.435 85.7% 85.7% 0.064

PPA +ω-3 0.980 395.869 100.0% 85.7% 0.003

PPA +B12 0.959 393.943 100.0% 85.7% 0.004

PPA +ω-3 + B12 0.776 396.939 71.4% 85.7% 0.085

Prostaglandin E2 (pg/g brain tissue) PPA 0.684 244.765 71.4% 71.4% 0.250

PPA +ω-3 0.776 242.584 71.4% 85.7% 0.085

PPA +B12 0.898 241.680 85.7% 85.7% 0.013

PPA +ω-3 + B12 0.878 235.374 85.7% 100.0% 0.018

Table 4 Colony count/plate of
the fecal flora immediately after
an orogastric dose of PPA
(250 mg/kg body weight/day for
3 days)

Isolated organisms Media and incubation conditions Control PPA

Staphylococcus and/or Bacilli
(gram-positive cocci/rod or gram-negative rod)

NA/ aerobic 37 °C/24 h 300 100

Enterobacteriaceae (gram-negative
rod lactose fermenters)

Mac/ aerobic 37 °C/24 h 0 0

Gram-positive/g-negative rod and cocci Blood agar/aerobic 37 °C/24 h 100 11

Clostridium sp. CCFA/anaerobic with 5% CO2

3 days

0 1
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A higher number of Clostridia colonies were found primar-
ily at day 3 after individual treatment withω-3 and Vit. B12 (42
and 27 colony counts per plate) (Table 5). In contrast, treatment
with the combination of Vit. B12 and ω-3 at the given doses
inhibitedClostridia growth. A similar lack ofClostridia growth
was observed throughout the treatment period.

The microbial profile of the last group treated with bothω-
3 and Vit. B12 (Table 6) was mainly dominated by the pres-
ence of Staphylococcus aureus, identified as a bacterium with
a grape-like structure when observed under the microscope
following gram staining. On the other hand, a slight growth
or even absence of enteric bacteria (gram-negative rod) was
observed during the study period.

Discussion

Although the neurotoxic effects of PPA have been repeatedly
recorded, the current study first aimed to ascertain the

neurotoxic effect of PPA through the induction of oxidative
stress and the impairment of lipid metabolism, which are two
known etiological mechanisms of autism. Second, the study
aimed to evaluate the possible therapeutic effect of ω-3 and
Vit. B12 or their combination on the PPA-induced neurotoxic-
ity in rat pups and to study the intestinal bacterial number and
strain fluctuation in response to the dietary intake in study. The
ω-3 polyunsaturated fatty acid, consisting of DHA and
eicosapentaenoic acid (EPA), and Vit. B12 were selected be-
cause both play regulatory roles in central nervous system
(CNS) enzyme activity as co-factors and are important in the
correct metabolic function of these enzymes (Feng et al. 2012;
Youdim et al. 2000;McCaddon et al. 2002).

Table 1 and Fig. 1 demonstrate the remarkable oxidative
stress induced in the rat brain after PPA treatment. This oxi-
dative stress can be observed through the significant increase
in lipid peroxides together with the significant decrease in
GSH expression. This observation is in accordance with our
previous work in which oxidative stress was reported to be

Table 5 Colony count/ plate of the fecal flora from PPA-treated rats after treatment with omega-3 (200 mg/kg body weight/day), vitamin B12
(16.7 mg/kg/day), or the combination of omega-3 and vitamin B12

Isolated Organisms Media and incubation conditions Control Day 3 Day 15 Day 30

Staphylococcus and/or Bacilli (Gram-positive
cocci/rod or gram-negative rod)

NA/aerobic 37 °C/24 h 300 44 63 > 300

ω-3 Enterobacteriaceae (gram-negative rod lactose
fermenters)

Mac/aerobic 37 °C/24 h 0 8 4 0

Gram-positive/gram-negative rod and cocci Blood agar/aerobic 37 °C/24 h 100 77 14 200

Clostridium sp. CCFA/ anaerobic with 5% CO2 0 42 0 0

Staphylococcus and/ or Bacilli (Gram-positive
cocci/rod or gram-negative rod)

NA/aerobic 37 °C/24 h 300 27 200 > 300

Vit B12 Enterobacteriaceae (gram-negative rod lactose
fermenters)

Mac/aerobic 37 °C/24 h 0 4 0 0

Gram-positive/gram-negative rod and cocci Blood agar/aerobic 37 °C/24 h 100 9 10 180

Clostridium sp. CCFA/anaerobic with 5% CO2 0 27 0 0

Staphylococcus and/or Bacilli (gram-positive
cocci/rod or gram-negative rod)

NA/aerobic 37 °C/24 h 300 100 20 > 300

ω-3 + Vit. B12 Enterobacteriaceae (gram-negative rod lactose
fermenters)

Mac/aerobic 37 °C/24 h 0 2 0 0

Gram-positive/gram-negative rod and cocci Blood agar/aerobic 37 °C/24 h 100 35 4 100

Clostridium sp. CCFA/anaerobic with 5% CO2 0 0 0 0

Table 6 Summary of the dietary
effects of the treatments on the
bacterial growth in the present
study

Bacterial number and strains PPA Omega 3 Vitamin B12 Omega 3 +
Vit. B12

Gram-positive bacteria (cocci or bacilli) ↓ ↑ ↑ ↓

Staphylococcus aureus ↑ ↑ ↑ ↑

Enterobacteriaceae (gram-negative bacteria) _ _ _ _

Clostridium sp. ↓ ↑0 time

End of treatment

↓

↓ ↓
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one of the persistent autistic features found in PPA-orally ad-
ministered rat pups (El-Ansary et al. 2012). Moreover, GST
expression was remarkably lower in PPA-treated rats than in
control rats. The antioxidant effects ofω-3 PUFA reported in
the present study are supported by the findings in the recent
work of Mazereeuw et al. (2017), which showed anti-
depressive effects of ω-3 PUFA through the amelioration of
oxidative stress. A reduction in oxidative stress, one of the
major etiological mechanisms of autism, has been shown to
alleviate autistic-like behaviors such as social impairment and
repetitive behavior (Al-Amin et al. 2015). Weiser et al. (2016)
proved that elevated dietary levels of ω-3 PUFA in pregnant
mice were protective against maternal infection as environ-
mental insults. Furthermore, these authors demonstrated that
dietary supplementation with DHA can reduce autistic-like
behaviors resulting from oxidative stress caused by maternal
infection in mice (Weiser et al. 2016).

Vit. B12 demonstrates antioxidative properties and is in-
volved in the biosynthesis ofmyelin and phospholipids, which
are critically important compounds during brain development.
Vit. B12 also exhibits anti-inflammatory and anti-apoptotic
effects (Kikuchi et al. 1997; Masuda et al. 1998; Zhang et al.
2008 and Das 2008). These mechanisms could explain the
observed beneficial effects of Vit. B12 in the present study,
either independently or in its combination with ω-3 PUFA.
This benefit can find more support in the recent study con-
ducted by Moosavirad et al. (2016) in which Vit. B12 andω-3
or their combination was effective at ameliorating the toxic
effect of lead and restoring lead-induced cognitive loss.

The synthesis of leukotrienes from AA is initiated with 5-
LOX in concert with 5-LOX-activating protein (FLAP).
Although FLAP does not have catalytic activity, it activates
the ability of 5-LOX to react with AA. Leukotriene A4
(LTA4) is either conjugated with reduced glutathione by leu-
kotriene C4 (LTC4) synthase to yield LTC4 or is converted
into leukotriene B4 (LTB4) by LTA4 hydrolase. LTB4 and
LTC4 are exported from the cell by specific transporter pro-
teins. Exported LTC4 is the parent compound of cysteinyl
leukotriene (LTD4), which undergoes conversion to leukotri-
ene E4 (LTE4) by sequential amino acid hydrolysis. The
amount of LTB4 and cysteinyl leukotriene (LTD4 and
LTE4) depends on the distal enzymes LTA4 hydrolase and
LTC4 synthase, respectively. LTA4 and LTB4 (non-cysteinyl
leukotrienes) are structurally different from the cysteinyl leu-
kotrienes (Cys-LT) as they lack the cysteine moiety present in
the Cys-LT (LTC4, LTD4, and LTE4) (Kuhn et al. 2015).
Table 1 and Fig. 1 demonstrate that in spite of the twofold
increase in 5-LOX expression in the PPA-treated rat pups
compared to that in the control group, LTB4 levels were
non-significantly changed. This difference may be explained
on the basis that LTC4 synthase might have a lower Km and
higher affinity for LTA4 than LTA4 hydrolase. Moreover, the
non-significant change in LTB4 in spite of the remarkable

increase in 5-LOX activity can be attributed to the fact that
enzymatic hydration products (LTB4) are primarily less reac-
tive metabolites that can be conjugated and excreted. A great
analogy between human, mouse, and rat LTC4S has been
reported. Human and mouse LTC4S have highly similar cat-
alytic characteristics to rat LTC4S, with recorded Km and
Vmax values of 18.8 ± 2.9 μM and 56.2 ± 5.6 nM/min/mg
protein, respectively, when LTA4 was used as the substrate
(Schröder 2007). These two suggested mechanisms are also
supported by the significant decrease in GSH and GST, two
components critically required for either LTB4 conjugation
and excretion or the biosynthesis of LTC4 from LTA4 by
LTC4S (Seidegård and Ekström 1997). Moreover, interesting-
ly, LTA4 hydrolase is inhibited by its substrates, a process that
limits the production of LTB4 in LTA4S-containing cells
(McGee and Fitzpatrick 1986). Under conditions of essential
fatty acid deficiencies, such as PPA neurotoxicity (El-Ansary
et al. 2016), the production of 5-LOX metabolites results in
the inhibition of LTA4 hydrolase, decreasing basal LTB4 pro-
duction below what would be expected from AA acid deple-
tion (Stenson et al. 1984; Cleland et al. 1994). This explana-
tion is supported by the most recent study by Zakharov et al.
(2017), which reported that patients with brain damage had
lower LTB4 levels than healthy controls. Table 1 and Fig. 1
also present the ameliorating effect of ω-3 and Vit. B12, with
Vit. B12 being the most effective followed by treatment with
the combination of Vit. B12 and ω-3 and treatment with ω-3
alone, which was less potent, resulting in a 37% increase in 5-
LOX activity compared to that in control untreated rats.

The unexpected decrease in COX2 and PGE2 expression
in response to PPA-intoxication (P ˂ 0.005) (Table 1 and
Fig. 1) may be related to the observed alteration in the gut
microbiota of the treated rats. COX-2 is well known to have a
critical role in the adaptive cytoprotection response in gastro-
intestinal (GI) mucosal cells. When the GI is inflamed (e.g.) in
response to toxins of pathogenic bacteria overgrowth, large
amounts of PGs are produced at sites of injury by rapidly
induced COX-2 expression, which usually aids in the healing
process of the injured gut. Under this condition, inhibition of
COX-2 should be avoided in patients who are vulnerable to GI
inflammation (e.g., autistic patients) (Parente 2001). Table 1
and Fig. 1 also demonstrate the effects of independent or com-
bined treatment with ω-3 and Vit. B12. The three therapeuti-
cally treated groups did not demonstrate a significant differ-
ence in COX-2 expression when compared to control-
untreated rat pups, but COX-2 expression in all of the thera-
peutically treated groups was significantly different from that
in the PPA-treated rats (P ˂ 0.018).

Our findings are supported by the work of Tabbaa et al.
(2013), which showed that after intravenous injection of
Escherichia coli LPS in animal models, fish oil, a major
source of ω-3, effectively restored the intestinal integrity
and decreased LPS-induced inflammation (Liu et al. 2012;
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Oliver et al. 2012; Titos et al. 2011). Moreover, fish oil in-
duced the synthesis of PGs, an important COX-2 product. PGs
have modulatory effects on GI inflammation through the in-
duction of resolvin D1 and protectin D1, which reduce the
macrophage pro-inflammatory response to LPS associated
with E. coli. This modulatory effect was associated with an
enhanced production of tumor necrosis factor-α (TNF- α) to
assist in the clearance of the pathogenic bacteria (Palmer et al.
2011; Weylandt et al. 2012).

Studies of the gut microbiota of mammals have shown that
several bacterial species, predominantly belonging to the phy-
la Bacteroidetes and Firmicutes, are found and that their pres-
ence is highly influenced by the host diet (Ley et al. 2008)
(Hooper and Gordon 2001; Sonnenburg et al. 2010).
However, this change occurs within a short period of time
(1–4 days after diet intake) (Hooper and Gordon 2001;
Sonnenburg et al. 2010). The variability in bacterial types
screened from the animal groups in this study pre- and post-
treatment was in accordance with previous findings, showing
various types of bacteria and a complete absence of
Clostridium sp. in the control group. However, Clostridia
growth was found to be induced with PPA intake on day 3
and reached its highest number following individual treatment
with ω-3 and Vit. B12. Clostridia growth then decreased or
disappeared once again after more doses ofω-3 and Vit. B12.
The fecal flora from those treated with the combination ofω-3
and Vit. B12 did not show Clostridia growth at any time point
along the treatment period. These results indicated that dietary
intake alters the gut microbiota in a relatively short amount of
time. On the other hand, the last group of rats treated withω-3
and Vit. B12 showed that the intestinal composition of the rats
in this study mainly included Staphylococcus aureus follow-
ing ω-3 dietary intake. This observation suggests that higher
intake of polyunsaturated fatty acids alters the gut microbiota,
resulting in a microbiota mainly dominated by the gram-
positive bacteria Staphylococcus aureus, potentially related
to an increase in carbohydrate production in the gut environ-
ment promoting the colonization of these gram-positive cocci.
Furthermore, the influence of dietary supplementation on
Clostridium sp. growth and the restoration of a healthy
microbiota shown in this study suggest that these die-
tary supplements could be considered as promising al-
ternative treatments for Clostridium difficile disease and
other intestinal dysbiosis (Borody et al. 2004; Bakken
et al. 2011). Studies related to the intake of a specific
dietary component have demonstrated that bacteria may
respond to a specific dose of a nutrient either by de-
creasing or increasing in number or even by being
masked by other species. Fats, proteins, carbohydrates,
and probiotics all induce changes in the gut microbiota with
effects observed on host immunity and metabolic markers. A
high unsaturated fat diet has not been reported, from human
studies, to induce a significant alteration in the gut bacterial

profile; however, mouse studies have reported increases in
Actinobacteria (Bifdobacterium and Adlercreutzia), lactic ac-
id bacteria (Lactobacillus and Streptococcus), and
Staphylococcus aureus, as observed in this study. Thus, a
healthy microbiota is critical for maintaining the metabolic
lifestyle of the host.
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