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Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental pathology characterized by an impairment in social interaction,
communication difficulties, and repetitive behaviors. Glutamate signaling abnormalities are thought to be considered as major
etiological mechanisms leading to ASD. The search for amino-acidic catabolytes related to glutamate in patients with different
levels of ASDmight help current research to clarify the mechanisms underlying glutamate signaling and its disorders, particularly
in relation to ASD. In the present study, plasma levels of the amino acids and their derivatives glutamate, glutamine, and γ-
aminobutyric acid (GABA), associated with their relative ratios, were evaluated using an enzyme-linked immunosorbent assay
(ELISA) technique in 40 male children with ASD and in 38 age- and gender-matched neurotypical health controls. The Social
Responsiveness Scale (SRS) was used to evaluate social cognition, and the Childhood Autism Rating Scale (CARS) was used to
assess subjects’ behaviors. Children with ASD exhibited a significant elevation of plasma GABA and glutamate/glutamine ratio,
as well as significantly lower levels of plasma glutamine and glutamate/GABA ratios compared to controls. No significant
correlation was found between glutamate levels and the severity of autism, measured by CARS and SRS. In receiver operating
characteristic (ROC) curve analysis, the area under the curve for GABA compared to other parameters was close to one,
indicating its potential use as a biomarker. Glutamine appeared as the best predictive prognostic markers in the present study.
The results of the present study indicate a disturbed balance between GABAergic and glutamatergic neurotransmission in ASD.
The study also indicates that an increased plasma level of GABA can be potentially used as an early diagnostic biomarker for
ASD.
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Introduction

Autism spectrum disorder (ASD) is a heterogeneous and com-
plex neurodevelopmental disorder characterized by

impairment in social interaction, communicative disturbance,
and repetitive patterns of behaviors (APA 2013; Christensen
et al. 2016). Research indicates that ASD has a complex and
multifactorial etiology, involving interactions between
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different genetic, neurological, immunological, nutritional,
and environmental factors (Kwong et al. 2000; Boddaert
et al. 2009; Mitchell et al. 2011; Bjørklund and Chartrand
2016; Bjørklund et al. 2016; Endreffy et al. 2016; Matelski
and Van de Water 2016; El-Ansary et al. 2017; Meguid et al.
2017). The prevalence of ASD is remarkably increased during
the last decades (Elsabbagh et al. 2012; Lavelle et al. 2014).
Recently in the US, a prevalence of 1 on 68 children (1.47%)
has been reported to suffer from ASD (Zablotsky et al. 2015;
Christensen et al. 2016), and this trend is 4.5 times more com-
mon in boys than in girls (Christensen et al. 2016). However,
no statistics are yet available in Saudi Arabia concerning the
prevalence of ASD (Zeina et al. 2014).

Recent reports showed that an imbalance in the excitatory
and inhibitory mechanisms in the GABA and glutamate neu-
rophysiology was observed in ASD individuals (Rojas et al.
2014). In the human brain, glutamate is one of the major
excitatory neurotransmitters (Pittenger et al. 2011; Naaijen
et al. 2017). Glutamate is responsible for many neurological
functions, including cognition, memory, behavior, movement,
and sensation. It also plays significant roles in the brain de-
velopment, including synapse induction and their relationship
with astrocytes, cell migration, synaptic spatial organization in
the cerebellum, cell differentiation, and death (Moriyama et al.
2000; Balakrishnan et al. 2014; Kim et al. 2017). Because of
these critical and essential functions, glutamate dysregulation
has been associated with some neurodevelopmental and neu-
rodegenerative disorders such as schizophrenia, ASD, and
epilepsy (Javitt 2004; Santoro et al. 2012). Regulation of the
synaptic level of glutamate is essential to prevent accumulation
of glutamate in the synaptic cleft, which would result in over-
stimulation of glutamate receptors leading to neuronal
excitotoxicity and damage (Mark et al. 2001; Choudhury et al.
2012). On the other side, γ-aminobutyric acid (GABA) in the
brain is responsible for synaptic inhibition (Bjørklund 2013).
Neurons cannot make their amino acid neurotransmitters gluta-
mate andGABAwithout glutamine, as a precursor released from
astrocytes into glutamatergic or GABAergic neurons (Reubi
et al. 1978; McKenna et al. 2011). Glutamate is taken up from
the synaptic space into astrocytes, where is converted into glu-
tamine, transported to neurons and reused. The ‘glutamate-glu-
tamine cycle’ is essential to avoid excitotoxicity (Shimmura
et al. 2013) and the equilibrium between excitatory and inhib-
itory neurotransmission is essential for the proper brain devel-
opment (Choudhury et al. 2012;Wu and Sun 2015). It has been
reported that this ‘glutamate-glutamine cycle’ is impaired in the
brains of ASD patients (Shimmura et al. 2013), and an imbal-
ance between excitation and inhibition in glutamate signaling
could be a possible cause of ASD (Fatemi 2008).

A recent multi-regression study in Saudi Arabia reported
that differences in the glutamate and glutamine were a signif-
icant predictive variable of ASD, using a multi-regression
stepwise test, with glutamate or glu/gln ratio as a dependent

variable in the ASD group (El-Ansary 2016). The multiple
regression analysis also revealed a marked association be-
tween reduced GABA, glutamate excitotoxicity (affecting
glutamine plasma levels) and neuroinflammation in autistic
patients (El-Ansary and Al-Ayadhi 2014). This evidence
would suggest that these parameters were associated with se-
verity of ASD, as assessed by standardized questionnaires on
ASD severity. Levels of glutamine in ASD were recently ex-
amined, and it was found that both plasma glutamate and
glutamine serve as possible biomarkers of the typical IQ found
in ASD (Shimmura et al. 2011). Very few associations of these
biomarkers with moderate or even severe autism have been
conducted, yet the impaired levels of glutamate and gluta-
mine, which should biochemically reflect glutamate pathway
and GABA, have been observed in the attention-deficit hyper-
activity disorder (ADHD), which usually co-occur with severe
autism (Maltezos et al. 2014; Zablotsky et al. 2017)). In Saudi
Arabia, no studies have been ever conducted to evaluate the
potential relationship between glutamate (GABA) and gluta-
mine in ASD. The present study aims to analyze serum levels
of glutamate, glutamine, and GABA, and their relative ratios
related to glutamate excitotoxicity in plasma of Saudi children
with ASD, and also to compare these values with the serum
concentrations found in a neurotypical control group of age
and sex-matched children.

Materials and methods

Compliance with ethical standards

All protocols used in the present study followed the ethical
guidelines of the Declaration of Helsinki (WMA 2013) and
were approved by the King Khalid Hospital Ethical
Committee, Riyadh, Saudi Arabia (Protocol 15/0367/IRB).
Written consent was obtained from parents, tutors or care-
givers of both the ASD children and the neurotypical controls,
who participated in the study.

Participants

In the present study, 40 male children with ASD were en-
rolled from the Autism Research and Treatment Center at
King Khalid University Hospital in Riyadh. At the begin-
ning of the study, we conducted a sample size and a popu-
lation study to select the suitable subjects, no covariates
regarding ages and sexes biased our recruitment protocol.
The sample size was assessed using Minitab® Software
v18, according to previous reports (Rudzki et al. 2017;
Kadam and Bhalerao 2010) based on an available hospital-
ized population. The sample size was calculated based on a
control group expected to present a conversion rate of less
than 17% and a minimum detectable effect of 95%, on
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statistical significance (positive) at 95%. Size sample ful-
fills the minimum size for a t-test analysis.

The mean age of the ASD children was 6.8 ± 5.2 years
(Mean ± SD). In all subjects, the diagnosis of ASD was con-
firmed using the Developmental Diagnostic Dimensional
Interview (3Di) (Skuse et al. 2004), the Autism Diagnostic
Observation Schedule (ADOS) (Rutter et al. 2005, 2012), as
well as the Autism Diagnostic Interview-Revised (ADI-R).
None of the ASD children underwent special supplements,
alternative treatments or undergoing any pharmacological
therapy during the study. No ASD patient was ever positively
diagnosed with OCD, ODD, ADHD or other mood/psychiatric
disorders. The control group consisted of 38 age- and gender-
matched healthy children with a mean age of 8 ± 3.2 years and
enrolled from the pediatric clinic at King Saud Medical City in
Riyadh. All participants were screened via anamnestic inter-
views with their parents for current or past physical illness,
current pharmacotherapy, and vaccination. Subjects who had
dysmorphic features, fragile X syndrome, severe neurological
(e.g., seizures), psychiatric (e.g., bipolar disorder) or other
known medical conditions, including endocrine, pulmonary,
kidney, liver, and cardiovascular disease were excluded from
the study.

Behavioral assessment

The behavioral assessment was performed using the
Childhood Autism Rating Scale (CARS), a standardized ques-
tionnaire. It was developed for children over the age of 2 years,
with the purpose to differentiate children with ASD from the
ones with other developmental disabilities (Reber 2012;
Breidbord and Croudace 2013). CARS consists of 15 items
assessing behaviors associated with autism, including general
impressions (Chlebowski et al. 2010) and is usually complet-
ed by a physician involved in the study, based on clinical and
behavioral manifestations of the patients and anamnestic in-
terviews. Each item is scored on a scale ranging from one to
four. Total scores can range from a score of 15 to 60. Scores
below 30 indicate that the individual is in the non-autistic
range. Scores between 30 and 36.5 indicate mild to moderate
autism, and scores from 37 to 60 indicate severe autism
(Chlebowski et al. 2010).

The Social Responsiveness Scale (SRS) is an instrument to
evaluate the social aspects of ASD. It was developed for chil-
dren between 4 and 18 years to identify ASD in the pediatric
population and to screen and support clinical diagnosis.
Usually, patients or patient’s parents completed this question-
naire, also with the assistance of a physician or practitioner.
The domains of the 65 items questionnaire are social aware-
ness, social cognition, social communication, social motiva-
tion, restricted interests, and repetitive behavior associated
with ASD (Salley et al. 2013). The answers are rated on a
scale of 1 (Bnot true^); 2 (Bsometimes true); 3 (often true);

and 4 (Balmost always true^). A score of ≥76 is considered
severe, i.e., strongly related to autistic disorder. A score of 60–
75 indicates mild to moderate deficiencies in reciprocal social
behavior, and scores of 59 and below are considered normal
(Reber 2012).

Blood collection procedure

After an overnight fast, blood samples were collected in 7 ml
tubes containing K2-EDTA. Samples were centrifuged at
3000 rpm (1450 g) for 15 min at 4°C. The plasma was
decanted and aliquoted to prevent multiple freeze-thawing
cycles. The blood samples were stored at −80°C until analysis.

Biochemical assays

The quantitative determination of glutamate, GABA, and glu-
tamine was measured in blood plasma from the ASD children
and neurotypical controls using enzyme-linked immunosor-
bent assay (ELISA) technique. The applied assays were based
on the method of competitive binding enzyme immunoassay
technique. Descriptions of kits-assays are described below.

Assay of glutamate

Glutamate was analyzed using an ELISA diagnostic kit from
MyBioSource (SanDiego, CA, USA). The procedure requires
three steps, and the first one is an extraction step. Plasma
samples and the standards were added together with the dilu-
ent in the extraction plate followed by a derivatization step in
which the extracted plasma samples and the standards were
added together with sodium hydroxide, the equalizing re-
agent, and D reagent in a reaction plate, covered, and shaking
for 2 h, followed by addition of the Q Buffer into all wells. In
the last step, the extracted plasma samples and standard com-
pete with glutamate antiserum for a specific number of bind-
ing sites on the glutamate microtiter strips, a mechanism last-
ing for 15–20 h at 2–8°C. Free antigen and free antigen-
antiserum complexes are then removed by three times wash.
After that, the anti-rabbit IgG-peroxidase conjugate is added,
incubated for 30 min on a shaker, and aspirated by washing.
Tetramethylbenzidine (TMB), as the enzyme substrate, was
then added to detect the antibody bound to the solid phase.
The absorbance of the solution in the wells is read with the use
of a microplate reader at 450 nm, and the concentration of
unknown titers was calculated using the standard curve.

Assay of GABA

Gamma-aminobutyric acid was analyzed using an ELISA kit
from MyBioSource (San Diego, CA, USA). The kit has a
microtiter plate that is pre-coated with an antibody specific
to GABA. During the assay, the GABA in the standard or
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sample competes with a fixed quantity of biotin-labeled
GABA for sites on the pre-coated monoclonal antibody.
After washing the excess conjugate and unbound standard or
sample from the plate, avidin conjugated to horseradish per-
oxidase (HRP) was added. TMB as enzyme substrate was
used to detect the antibody bound to the solid phase, the de-
veloped color was read at 450 nm, and the concentration of
GABAwas measured using the standard curve.

Assay of glutamine

For the measurement of glutamine quantity in human plasma,
an ELISA kit fromMyBioSource (San Diego, CA, USA) was
employed. This kit, based on competitive enzyme immunoas-
say technique, uses a GLN-HRP conjugate and a monoclonal
anti-glutamine. On the pre-coated plate, the assay sample and
the buffer are incubated 1 h together with GLN-HRP conju-
gate, then decanted, and then five times washed. Next, the
wells are incubated with TMB as a HRP enzyme substrate.
The intensity of the yellow color that appeared after adding
stop reagent was spectrophotometrically measured at 450 nm
in a microplate reader.

Statistical analyses

Statistical Program for Social Sciences (SPSS, IBM-SPSS,
Inc., Chicago, IL, US) was used for all analyses. A
Wilcoxon-Mann-Whitney test was used for comparisons be-
tween mild to moderate and severe autism groups from CARS
on the levels of glutamate, glutamine, and GABA, taking into
account the results of the Shapiro-Wilk test for normality.
Ratios were also used to evaluate the biochemical and func-
tional relationship between the biochemical markers altogeth-
er, as statistical comparisons in this context were not entirely
foreseen by just evaluating absolute plasma levels of every
single biomarker, without their ratios. Also, data were
expressed as mean ± standard deviation (SD). A multivariate
analysis was also accomplished by using both a one-way
MANOVA and a multi-regression test. To assay variance dis-
tribution in the present study, a Levene test was also per-
formed. Potential correlations between CARS and biochemi-
cal analytes were evaluated by Spearman rank correlation test.
Positive or negative correlations r > 0.80 were considered sig-
nificant. A significant difference between neurotypical con-
trols and ASD patients or between different severity levels
(i.e., mild to moderate and severe) within the CARS, and
SRS scales with biochemical analytes were considered signif-
icant at the H0 hypothesis with a P value <0.05.

Furthermore, biomarkers were evaluated by receiver oper-
ating characteristics (ROC) curve using the same software
(SPSS). In a ROC analysis, the area under the curve (AUC)
provides a useful measure for comparing different biomarkers.
It can be used for the comparison of differences for a

parameter between ASD and control subjects or between dif-
ferent autism severity levels (i.e., mild tomoderate and severe)
within the CARS and SRS scales. AUC close to one indicates
an excellent diagnostic and predictive biomarker. Moreover,
predictiveness curves for absolute and relative values of the
measured parameters in the ASD patients were drawn using
SPSS software, to assess the performance of these biomarkers
in the Saudi population. Moreover, it displays crucial risk
information that does not appear by the ROC curve.

Results

GABA and glutamine levels, as well as glutamate/GABA, and
glutamate/glutamine ratios, were significantly different be-
tween the ASD group and controls (Table 1). No significant
differences were observed when this comparison was per-
formed between mild and moderate CARS ASD severity
and severe ASD (Table 1). The ASD group showed an in-
crease in GABA and glutamate/glutamine of 80.65% (p =
0.001) and 56.98% (p = 0.027), respectively, compared to
controls. There was a significant decrease in the levels of
glutamine, and glutamate/GABA of 24.33% (p < 0 0.001)
and 37.41% (p < 0.001), respectively, in the ASD group com-
pared with the control group. Furthermore, a decrease in glu-
tamate levels in the ASD group was observed, although non-
significant (p > 0.05) (Table 1).

When the autism severity, as assessed by CARS and SRS,
was compared with glutamate and glutamate/GABA ratio, an
increase in the level of glutamate with the severity occurred,
while this level decreased compared to GABA in both scales.
The glutamine level increased with higher autism severity on
the CARS scale, whereas it decreased with increased severity
on the SRS scale. In the glutamate/glutamine ratio, the levels
tended to decrease with severe CARS scale, whereas it in-
creased with increasing SRS scale. These results were, how-
ever, not significant at the p < 0.05 level and so multivariate
analysis was latterly used to assess this issue.

Except for the absolute value of glutamate, all other param-
eters, and their relative ratios, were correlated with ASD se-
verity, measured as CARS (Fig. 1). Table 2 and Fig. 2 illus-
trates the ROC analysis data as the AUC, cutoff values, spec-
ificity, and sensitivity of the measured parameters. The AUC
was found to be close to one in GABA for ASD and different
severity of both scales (CARS and SRS). The ROC analysis
demonstrated 82.5% sensitivity (82.5% of the patients with
ASD had elevated GABA values compared to the
neurotypical controls) and 86.8% specificity (only 13.2% of
neurotypical control individual had elevated GABA) (Table 2
and Fig. 2). Predictiveness curves, calculated according to
Pepe et al. (2008) showed that at the best Youden cutoff the
predictive risk to retrieve false positive or false negative is the
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highest for glutamate alone, while it reaches the lowest value
for its association with glutamine in the Glu/Gln ratio (Fig. 3).

When considering biochemical markers statistics, the
Shapiro-Wilk test assessed a parametric distribution. The
one-way MANOVA assessed that each biochemical marker
changed with CARS or SRS (Table 3), but this effect was
due to the strong association of biomarkers with the scoring
evaluations, as these markers were retrieved only from ASD
children (Table 3). The Levene’s test for homogeneity of var-
iances showed that variances were homogeneously dispersed
in the ASD and control populations, aside for the comparison
SRS/glutamate (Table 3). Therefore, a much stronger statisti-
cal test, evaluating multiple regression between CARS/SRS
and biochemical markers was performed, showing that only
glutamine levels explained the variability of ASD severity
(CARS/SRS) (p = 0.03956, Table 3). Finally, when the

Spearman correlation coefficients were calculated, the results
showed that CARS was correlated with SRS and glutamine
(P < 0.009 and P < 0.038, respectively), while GABA was
negatively associated with glutamine (P < 0.001). The
glutamate/GABA ratio was positively associated with
glutamate/glutamine (P < 0.001) (Table 4).

Discussion

Although many recent studies are concerned with the screen-
ing for biomarkers of early diagnosis of ASD, no specific
biomarker to date has been found to accurately mirror the
etiological mechanism of this complex disorder directly.
Neuroinflammation, oxidative stress, together with glutamate

Table 1 Nonparametric test (Wilcoxon-Mann-Whitney test) between 40 male Saudi children with autism spectrum disorder (ASD) and 38 age- and
gender-matched neurotypical controls

Parameter Groups N Mean ± S.D. Percent change P value

Glutamate (Glu) (ng/ml) Groups Controls 38 45,643.82 ± 18,801.39 100.00% 0.726
ASD children 40 45,344.88 ± 17,252.72 99.35%

CARS Mild to Moderate 21 41,429.52 ± 15,979.10 90.77% 0.081
Severe 19 49,672.37 ± 17,987.99 108.83%

SRS Mild to Moderate 10 38,982.00 ± 21,153.42 85.40% 0.396
Severe 14 45,067.86 ± 18,291.53 98.74%

γ-Aminobutyric acid (GABA) (ng/ml) Groups Controls 38 9.13 ± 6.69 100.00% 0.001*
ASD children 40 16.50 ± 14.95 180.65%

CARS Mild to Moderate 21 18.17 ± 20.16 198.92% 0.524
Severe 19 14.66 ± 5.03 160.47%

SRS Mild to Moderate 9 25.18 ± 30.00 275.69% `
Severe 14 14.64 ± 4.64 160.31%

Glutamine (Gln) (ng/ml) Groups Controls 38 7.13 ± 2.05 100.00% 0.001*
ASD children 39 5.39 ± 2.40 75.67%

CARS Mild to Moderate 20 4.97 ± 2.38 69.78% 0.183
Severe 18 6.00 ± 2.37 84.16%

SRS Mild to Moderate 9 5.43 ± 1.82 76.17% 0.619
Severe 12 4.66 ± 2.76 65.36%

Glu/GABA ratio Groups Controls 38 5718.22 ± 2669.91 100.00% 0.001*
ASD children 38 3579.13 ± 2022.28 62.59%

CARS Mild to Moderate 20 3418.83 ± 2047.60 59.79% 0.539
Severe 18 3757.24 ± 2037.45 65.71%

SRS Mild to Moderate 9 2916.96 ± 1954.37 51.01% 0.616
Severe 13 3299.72 ± 1860.95 57.71%

Glu/Gln ratio Groups Controls 36 7143.80 ± 4226.72 100.00% 0.027*
ASD children 36 11,214.60 ± 8741.36 156.98%

CARS Mild to Moderate 19 12,539.64 ± 10,183.83 175.53% 0.623
Severe 17 9733.68 ± 6786.79 136.25%

SRS Mild to Moderate 9 8525.06 ± 5646.99 119.34% 0.394
Severe 12 14,821.15 ± 12,081.12 207.47%

Results are presented asMean ± S.D.P values demonstrate the significant differences either between total ASDparticipants relative to control or between
mild-moderate relative to severe ASD patients using the Childhood Autism Rating Scale (CARS) and the Social Responsiveness Scale (SRS) as autism
severity measures

*: P value <0.05 shows significant alteration
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excitotoxicity are some of the major signaling pathways relat-
ed to ASD (El-Ansary and Al-Ayadhi 2014).

In the present study, impairment of glutamate/GABA –
glutamine cycle was found in the patients with ASD, thus
confirming previous reports (Coghlan et al. 2012).
Unexpectedly, glutamate, which would also be a biomarker
of excitotoxicity, did not show a significant change in our
statistical analysis, opposite to GABA and glutamine, as their
relative concentrations showed significant changes that
reflected abnormal glutamate/GABA – glutamine cycle.

Glutamate transporters are abundant in astrocytic pro-
cesses, and play a predominant role in the glutamate

clearance in the CNS. Modulation of glutamate trans-
porters may occur via both slow regulatory mechanism
or rapid regulation that occur within minutes (Simard
and Nedergaard 2004), allowing glutamate to cause neu-
ronal excitotoxicity before transporters on the astrocyte
take up its clearance. Therefore, glutamate excitotoxicity
has been proposed as a possible cause of exacerbation of
ASD (El-Ansary and Al-Ayadhi 2014).

The present study found no significant association between
autism severity as assessed by CARS and SRS and themeasured
biomarkers glutamate, GABA, glutamine and their relative ra-
tios. In the multiple regression analysis, glutamine appeared as a

Fig. 1 Spearman rank correlations between CARS scale values and a Glutamate, b GABA, c Glutamine, d Glutamate/GABA ratio, and e Glutamine/
Glutamate ratio
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potentialmarker of autism severity score, but this evidencemight
come from the awareness that glutamine is a commonly shared
metabolite at the crossroadGABA/glutamate.While this result is
interesting, further investigation should confirm this finding. It
has earlier been shown that elevated levels of glutamate in serum
in ASD patients correlate weakly with autism severity (Shinohe
et al. 2006). On the other hand, decreased level of glutamine has
been found in children with ASD (Ghanizadeh 2013), so that it
has also been suggested as a screening test for ASD in children
(Ghanizadeh 2013). The suggested importance of depleted glu-
tamine as a diagnostic marker in ASD is also in agreement with
the medical hypothesis of Good (2013). He suggested that the
remarkable improvements seen in autistic patients during fever
are mostly due to the release of glutamine frommuscles to blood
and directly to the brain through the concentration-dependent
transporter (Bode 2001).

Human blood plasma is a complex biological fluid that
contains proteins, peptides, lipids, and metabolites, which
reflect physiological activity and pathology in various body
organs, including the CNS. In this sense, it is particularly

cumbersome and difficult to reach a reliable marker for ASD
prognosis. In humans, about 500 ml of cerebrospinal fluid
(CSF) is absorbed into the blood daily. Blood is, therefore, a
suitable source of neurodegenerative disease biomarkers
(Hye et al. 2006). As glutamate and glutamine are actively
transported out from the CNS (Hawkins et al. 2006), there is
some positive expectation of finding a positive association
between plasma and CSF levels of glutamine and glutamate
(Fatemi 2015).

A further element to be taken into account in the present
study is the pediatric cohort of patients. The functional prop-
erties of GABA receptor in the immature brain are significant-
ly different from those found in the adult brain (Owens and
Kriegstein 2002). Although GABA functions primarily as an
inhibitory neurotransmitter, it is quite surprising to know that
it can function as an excitatory neurotransmitter during brain
development to influence events such as proliferation, migra-
tion, synapse maturation, differentiation, as well as cell death
(Owens and Kriegstein 2002; Sibilla and Ballerini 2009).
GABA mediates these processes by the activation of

Table 2 Results for receiver operating characteristic (ROC) curve analysis between 40 male Saudi children with autism spectrum disorder (ASD) and
38 age- and gender-matched neurotypical controls

Parameter Group AUC Cutoff value Sensitivity % Specificity %

Glutamate (Glu) (ng/ml) ASD children 0.523 55,140.0 45.0% 73.7%

CARS Mild to Moderate 0.549 63,195.0 100.0% 18.4%

Severe 0.602 55,582.5 63.2% 73.7%

SRS Mild to Moderate 0.583 37,602.5 60.0% 68.4%

Severe 0.523 55,140.0 42.9% 73.7%

(GABA) (ng/ml) ASD children 0.878 10.350 82.5% 86.8%

CARS Mild to Moderate 0.880 10.350 85.7% 86.8%

Severe 0.875 11.841 78.9% 89.5%

SRS Mild to Moderate 0.911 8.577 100.0% 71.1%

Severe 0.922 10.685 92.9% 86.8%

Glutamine (Gln) (ng/ml) ASD children 0.718 5.997 69.2% 80.0%

CARS Mild to Moderate 0.750 5.971 70.0% 80.0%

Severe 0.671 5.997 66.7% 80.0%

SRS Mild to Moderate 0.726 5.512 66.7% 82.5%

Severe 0.753 5.971 75.0% 80.0%

Glu/GABA ASD children 0.739 5353.900 89.5% 52.6%

CARS Mild to Moderate 0.761 3149.050 65.0% 84.2%

Severe 0.715 4656.800 83.3% 60.5%

SRS Mild to Moderate 0.807 3149.050 77.8% 84.2%

Severe 0.763 5290.400 92.3% 52.6%

Glu/Gln ASD children 0.651 9533.20 50.0% 83.3%

CARS Mild to Moderate 0.649 13,356.50 36.8% 94.4%

Severe 0.654 9533.20 52.9% 83.3%

SRS Mild to Moderate 0.577 13,023.50 33.3% 94.4%

Severe 0.667 11,976.50 58.3% 86.1%

The predictive values of the measured markers are presented as area under the curve (AUC), specificity, and sensitivity

CARS Childhood Autism Rating Scale, SRS Social Responsiveness Scale
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glutamate ionotropic and metabotropic receptors. Relying on
this, the significant elevation of GABA found in the present
study (Table 1) might be associated with a previous mecha-
nism of excitotoxicity in ASD.

GABA and glutamate derive from each other, and therefore
alterations in one of the neurotransmitters can affect the other
one. The observed elevation of GABA in the present study can,
therefore, be associated with decreased GABA levels in the brain

Fig. 3 Predictiveness curve of a Glutamate, b GABA, c Glutamine, d Glu/GABA ratio, and e Glu/Gln ratio in the autistic group

Fig. 2 ROC curves of a Glutamate, b GABA, c Glutamine, d Glu/GABA ratio, and e Glu/Gln ratio in autistic group
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because of a lower number or dysfunctional neuronal GABA
receptors (El-Ansary and Al-Ayadhi 2014; El-Ansary 2016).
Accordingly, disruption of the cortical GABAergic inhibitory
interneurons functioning has been linked to various
neurodevelopmental disorders such as schizophrenia, ASD,men-
tal retardation, and epilepsy (Rossignol 2011; Sesarini 2015).

To assess this relationship and its dynamics, ratios between
different markers were also considered in this study. The
excitation/inhibition ratio is always constant in neurotypical
individuals, as excitatory neurons tend to be equal to

inhibitory neurons. It is possible that an imbalance of this ratio
can be responsible for health conditions like Down syndrome,
as well as excessive excitation (Xue et al. 2014).

Recently it was also proposed that frequent association of
ASDwith seizures as phenotypemight arise from an increased
excitation/inhibition ratio. This imbalanced ratio can be due to
increased glutamate activity, decreased GABA release, or re-
duced numbers of GABA receptors (Rosenberg et al. 2015).
Since there is no efficient receptor/uptake system, GABA ac-
cumulates in the extracellular space and reaches a high enough

Table 3 One way MANOVA and multi-regression analysis of 40 male Saudi children with autism spectrum disorder (ASD) investigated in the study
and their relationship with autism severity as evaluated by the Childhood Autism Rating Scale (CARS) and the Social Responsiveness Scale (SRS)

Parameter One way multiple ANOVA Multiple regression

1 CARS/SRS/Glutamate CARS: F value = 13.5 P < 0.0001 Multiple R 0.1695 P = 0.7255
R-squared 0.02875

SRS F value = 5.046 P = 0.004 Adjusted R-sq −0.05955
F-test 0.3256

2 CARS/SRS/GABA CARS: F value = 17.274 P < 0.0001 Multiple R 0.2745 P = 0.4225
R-squared 0.07533

SRS: F value = 30.736 P < 0.0001 Adjusted R-sq −0.008726
F-test 0.8962

3 CARS/SRS/Glutamine CARS: F value = 9.989 P = 0.001 Multiple R 0.6287 P = 0.03956
R-squared 0.3953

SRS: F value = 7.182 P = 0.001 Adjusted R-sq 0.3403

F-test 7.19

4 CARS/SRS/Glu-GABA ratio CARS: F value = 3.845 P = 0.023 Multiple R 0.03846 P = 0.9838
R-squared 0.001479

SRS: F value = 8.241 P < 0.0001 Adjusted R-sq −0.0893
F-test 0.0163

5 CARS/SRS/Glu-Gln ratio CARS: F value = 6.001 P = 0.005 Multiple R 0.4124 P = 0.1287
R-squared 0.1701

SRS: F value = 3.037 P = 0.032 Adjusted R-sq 0.09462

F-test 2.254

Levene’s test for homogeneity of variance Spearman rank correlation (higher ASD severity)

1 CARS: F = 1.089 SRS: F = 5.046 P = 0.464; P = 0.004 CARS highest scores/Glutamate

Variance diff in the SRS/Glu rho = −0.18736719583786
2 sided p value = 0.442422118312541

2 CARS: F = 0.447 SRS: F = 0.56 P = 0.919; P = 0.836 CARS highest scores/GABA

rho = −0.0550416800704593
(Homoscedasticity) 2 sided p value = 0.822911304244861

3 CARS: F = 2.397 SRS: F = 0.71 P = 0.094; P = 0.719 CARS highest scores/Glutamine

rho = 0.240216246546711

(Homoscedasticity) 2 sided p value = 0.336982381293736

4 CARS: F = 1.074 SRS: F = 1.028 P = 0.473; P = 0.482 CARS highest scores/Glu-GABA ratio

(Homoscedasticity) rho = −0.129104482867932
2 sided p value =

0.609654861517216

5 CARS: F = 0.295 SRS: F = 0.452 P = 0.982; P = 0.908 CARS highest scores/Glu-Gln ratio

rho = −0.329224058039744
(Homoscedasticity) 2 sided p value = 0.196923890319356
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level to exert its excitatory and depolarizing effects on distal
neurons (LeBlanc and Fagiolini 2011).

Moreover, the glutamate/glutamine ratio as a measure of
buffering glutamate pool through its conversion to glutamine
resulted significantly higher in ASD patients compared to
neurotypical controls. Since these two amino acids play roles
in intermediary metabolism, glutamine and glutamate mea-
surements alone are not a particularly useful index of gluta-
matergic synaptic measure. On the other hand, the glutamate/
glutamine ratio can be more accurate as a functional synaptic
measure because it reflects the relative amounts of metabo-
lites. Given glutamate synthesis in neurons and glutamine
synthesis in astrocytes, the glutamate/glutamine ratio is a po-
tentially useful index for quantifying neuronal–astrocyte inter-
actions and the balance of glutamatergic metabolites (Hall
et al. 2015). In the present study, the glutamate/glutamine ratio
was 56.98% elevated in the ASD children compared to the
neurotypical controls (Table 1). The increase may reflect in-
creased glutamate neurotransmission in the ASD patients
compared to the controls.

Receiver operating characteristic (ROC) curves are usually
used in biomarker research for the evaluation of the diagnostic
and predictive value of a biomarker. ROC curves are also used
in medicine to determine a cutoff value for a clinical test. For
example, a cutoff value of 10.350 was identified for GABA
level in the ASD group. A test value of GABA below 10.350
is considered normal, while above abnormal. GABA com-
pared to the other measured amino acids (glutamate and glu-
tamine) is considered as a good biomarker to indicate ASD.
GABA showed in the case of the SRS scale 100% sensitivity
(AUC= 0.911), which is regarded as an excellent biomarker.

Aside from the speculative description of what might occur
in ASD children concerning the glutamate/GABA-glutamine
signaling, more research is needed to enhance our knowledge
this topic. For example, the genetic background of the patients

should receive further attention. A limitation of the present
study is sample size. We attempted to obtain 100 individuals
in order to enhance statistical power, yet, due to difficulties in
retrieving accessible and reliable data on both CARS and SRS
we were compelled to restrict investigation numbers.

The results of the present study strongly suggest that only
glutamine levels, among the different markers investigated in
the study, appeared to reliably correlate with the severity of
autism, evidenced in the multiple regressions between
CARS/SRS. Furthermore, the present study indicates that
amino acids related to glutamatergic signaling are a factor in
the etiology of ASD in the Saudi population. Disruption in the
relative ratios of the evaluated parameters might relate to over-
stimulation of glutamate signaling, which subsequently leads
to glutamate excitotoxicity.
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