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Abstract

Background

Autism spectrum disorder (ASD) is a complex group of heterogeneous neurodevelopmental

disorders the prevalence of which has been in the rise in the past decade. In an attempt to

better target the basic causes of ASD for diagnosis and treatment, efforts to identify reliable

biomarkers related to the body’s metabolism are increasing. Despite an increase in identify-

ing biomarkers in ASD, there are none so far with enough evidence to be used in routine

clinical examination, unless medical illness is suspected. Promising biomarkers include

those of mitochondrial dysfunction, oxidative stress, energy metabolism, and apoptosis.

Methods and participants

Sodium (Na+), Potassium (K+), glutathione (GSH), glutathione-s-transferase (GST), Crea-

tine kinase (CK), lactate dehydrogenase (LDH), Coenzyme Q10, and melatonin (MLTN)

were evaluated in 13 participants with ASD and 24 age-matched healthy controls. Addition-

ally, five ratios, which include Na+/K+, GSH:GST, CK:Cas7, CoQ10: Cas 7, and Cas7:

MLTN, were tested to measure their predictive values in discriminating between autistic indi-

viduals and controls. These markers, either in absolute values, as five ratios, or combined (9

markers + 5 ratios) were subjected to a principal component analysis and multidimensional

scaling (MDS), and hierarchical clustering, which are helpful statistical tools in the field of

biomarkers.

Results

Our data demonstrated that both PCA and MDS analysis were effective in separating autis-

tic from control subjects completely. This was also confirmed through the use of hierarchical
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clustering, which showed complete separation of the autistic and control groups based on

nine biomarkers, five biomarker ratios, or a combined profile. Excellent predictive value of

the measured profile was obtained using the receiver operating characteristics analysis,

which showed an area under the curve of 1.

Conclusion

The availability of an improved predictive profile, represented by nine biomarkers plus the

five ratios, inter-related different etiological mechanisms in ASD and would be valuable in

providing greater recognition of the altered biological pathways in ASD. Our predictive pro-

file could be used for the diagnosis and intervention of ASD.

Introduction

Autism spectrum disorder is characterized by symptoms, such as impairment of social interac-

tion, and repetitive behaviors or restricted interests [1]. Recently, the prevalence of ASD has

dramatically increased, reaching 1:37 children in the United States [2]. The severity of autistic

features as well as the incidence of comorbid illnesses, which include intellectual disability,

anxiety, epilepsy, and gastrointestinal disorders, greatly differ among individuals with autism

[3–6]. ASD is currently diagnosed by observing common autistic behaviors in children [7].

Although expert clinicians can diagnose autism in children as young as 24 months the average

age at which autism is diagnosed is still considerably high and may reach that of four years [8].

Centers for Disease Control and Prevention., 2009). Families often wait a long time before

receiving a definitive diagnosis owing to the small number of well-trained clinicians capable of

performing an accurate and realistic assessment [9]. Early diagnosis is important because not

only intensive behavioral therapies are effective in decreasing disability in many children with

ASD [10,11], but also because the benefit of early intervention is greater the earlier the inter-

vention is started.

Based on our understanding of the etiological mechanisms of ASD, we previously demon-

strated that use of selected sets of biomarkers related to impaired lipid metabolism and neu-

roinflammation were effective for separating autistic from healthy control participants and for

correctly predicting the severity of ASD. We proved that effectiveness of identified libraries

relied on the fact that they were helpful in correctly discriminating the study population as

control or autistic patients and in categorizing autistic patients with different degree of sensory

profile impairments [12,13].

It is well accepted that metabolism-related biomarkers are more directly related to the

unique metabolic signature of an individual with ASD, than are the genomic, gut microbiome-

related, and environmental biomarkers such as neurotoxins and diet [6, 14, 15]. ASD-specific

reductions in multiple metabolites with concomitant falling in intelligence quotient have been

reported in several brain regions [15]. Metabolic analysis can offer important biomarkers that

might help in the identification of the impaired biological processes in ASD. Still, it is impor-

tant to highlight that there are presently no evidence-based approvals for metabolic or dietary

treatments for people with ASD [16,17].

Mitochondrial dysfunction is a well-studied etiological mechanism of ASD. Multiple stud-

ies have been performed to understand the role of mitochondrial dysfunction. Shoffner et al

[18] reported high levels of lactate, pyruvate, and alanine in the blood, urine, and cerebrospinal
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fluid, together with an increase in the mitochondrial complex I in almost half of their partici-

pants with ASD.

In 2011, Chauhan et al [19] reported a significant reduction in the activities of the mito-

chondria electron respiratory chain complexes (ETC) II, III, and IV in different brain regions

of children with ASD. Unexpectedly, the levels of these complexes were unchanged when

adults with ASD and healthy subjects were compared. Interestingly, these results suggested

that low levels of ETC complexes could re-adjust to reach the normal range as these children

approached adulthood [19].

These early observations were confirmed by our research group [20]. We previously

recorded abnormal levels of the mitochondrial plasma markers pyruvate, lactate dehydroge-

nase, creatine kinase, glutathione-S-transferase (GST), caspase 7 and respiratory complex I

(RCI) in children with ASD compared to those of age- and gender-matched control subjects.

Moreover, our study demonstrated that most severely affected children had both RC I and

GST abnormalities and that caspase 7, a marker of mitochondrial dysfunction, was the most

discriminating biomarker between patients with ASDand controls [20].

Interestingly, Nguyen et al [21] proved that dopaminergic neurons derived from children

with ASD displayed decreased neuritis development, concomitant with reduced mitochondrial

membrane potential, intracellular calcium level, ATP generation, and total number of mito-

chondria within the neuritis.

The current study was motivated by observations that mitochondrial dysfunction, as a

repeatedly recorded etiological mechanism of ASD, can be easily related to glutamate excito-

toxicity, oxidative stress, apoptosis, and impaired gut microbiota among other patho-etiologi-

cal causes. [22–24]. To record a panel of mitochondria-related markers or a metabotype that

might help in identifying children at high risk of presenting clinical features of ASD at very

early age, we tested the suitability of using the principal component analysis (PCA), Monte

Carlo simulation, and hierarchical clustering.

Based on the availability of potential treatment options for mitochondrial dysfunction-

related diseases, investigation into the molecular abnormalities underlying the link between

mitochondrial dysfunction and other etiological mechanisms of ASD could result into better

therapeutic interventions for patients with ASD.

Materials and methods

Participants

The study protocol was approved by the ethics committee of medical College, King Saud Uni-

versity according to the most recent Declaration of Helsinki (Edinburgh, 2000). Two groups of

participants were recruited for the study consisting of 13 autistic patients and 24 age and

Gender matched healthy control. All participants gave written informed consent provided

by their parents and agreed to participate in the study. The study participants were enrolled in

the study through the ART Center (Autism Research & Treatment Center) clinic. The ART

Center clinic sample population consisted of children diagnosed with ASD. The diagnosis of

ASD was confirmed in all study subjects using the Autism Diagnostic Interview-Revised

(ADI-R) and the Autism Diagnostic Observation Schedule (ADOS) and 3DI (Developmental,

dimensional diagnostic interview) protocols. The ages of autistic children included in the

study were between 2–12 years old. All were simplex cases (i.e. family has one affected individ-

ual). All are negative for fragile x syndrome gene. The control group was recruited from pedi-

atric clinic at King Saud medical city whose mean age ranged from 2–14 years. Subjects were

excluded from the investigation if they had dysmorphic features, or diagnosis of fragile X or
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other serious neurological (e.g., seizures), psychiatric (e.g., bipolar disorder) or known medical

conditions.

All participants were screened via parental interview for current and past physical illness.

Children with known endocrine, cardiovascular, pulmonary, liver, kidney or other medical

disease were excluded from the study. All patients and controls included in the study were on

similar but not identical diet and none of them were on any special high fat or fat restricted

diet.

Measures of disease severity among autistic patients

Disease severity was measured using the Childhood Autism Rating Scale (CARS). To obtain a

CARS score, each child was rated on a scale of 1 (normal) to 4 (severely abnormal) with respect

to each of 15 criteria (relating to others; imitation; emotional response; body use; object use;

adaptation to change; visual response; listening response; taste, smell, and touch responses;

fear and nervousness; verbal communication; non-verbal communication; activity level; level

and reliability of intellectual responses and general impressions). A final score was obtained by

computing the sum of the 15 individual scores, resulting in a combined score that could range

from 15 to 60. Scores below 30 were considered non-autistic; 30–36.5 were considered mild to

moderate ASD and scores greater than 36.5 were considered severe ASD [25].

Sample collection

After overnight fasting, blood samples were collected from autistic children and healthy con-

trols by a qualified lab technician into 3-ml blood collection tubes containing EDTA. Immedi-

ately after collection, blood was centrifuged at 4˚C at 3000 g for 20 minutes. The plasma was

decanted, dispensed into four 0.75 ml aliquots (to avoid multiple freeze-thaws cycles) and

stored at −80˚C until analysis.

Ethics approval and consent

This work was approved by the ethics committee of King Khalid Hospital, King Saud Univer-

sity (Approval number: 11/2890/IRB). A written consent was obtained from the parents of all

participants recruited in the study as per the guidelines of the ethics committee.

Biomarkers selection and measurements

The selected biomarkers were measured in the plasma samples of both autistic patients and

control. After initial assessment of the overall discriminatory power of 9 biomarkers through

its maximal area under the curve (AUC), as the best discriminatory power that the biomarker

can achieve, the presented 9 biomarkers and 5 relative ratios were selected based on their

recorded satisfactory (AUC), specificity and sensitivity when analyzed using receiver operating

characteristics.

• Measurement of K+ and Na+ levels

Potassium and sodium colorimetric kits, products of United Diagnostics Industry (UDI,

Dammam, KSA) were used to investigate plasma K+ and Na+ plasma levels according to the

manufactures’ instructions.

• Measurement of GST activity and GSH concentration

GST activity and total GSH concentration were calorimetrically determined in all blood

samples according to Mannervik [26] and Beutler et al. [27] respectively.
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• Measurement of CK and LDH activities

Plasma CK activity was evaluated in serum samples by using CK kit, a product of BioSystems

(Barcelona, Spain) according to the method of Schumann et al. [28]. Enzyme activity is

expressed in U/L with a detection limit of 9.2 U/L = 153 nkat/L. However, LDH activity was

assayed spectrophotometrically in all blood samples by using LDH kinetic Kit, a product of

United Diagnostics Industry (UDI, Dammam, KSA). According to Amador et al. [29] and

Wacker et al. [30], the "forward" reaction (lactate + NAD+ to pyruvate + NADPH + H+) was

followed and NADH formation rate, indicated by an increase in absorbance at 340nm, was

recorded.

• Caspase 7 level measurement

Human Caspase-7 ELISA kit, a product of CUSABIO (China) was used to investigate Cas7

level in all blood samples according to the manufacturer’s instructions. This kit employs the

competitive inhibition enzyme immunoassay technique. The wavelength was detectable at

540–570 nm while the detection limit was from 62.5 to 400 pg/ml.

• Measurement of CoQ10 and MLTN levels

Human Coenzyme Q10 and Human Melatonin ELISA Kits, products of MyBiosource (San

Diego, California, USA) were used to evaluate the quantity of CoQ10 or melatonin in blood

samples, respectively. The competitive inhibition enzyme immunoassay technique was

employed and the optical density was detectable at 540 nm. The detection range was 6.25 pg/

ml-400 pg/ml for MLTN while the minimum measurable level of CoQ10 was 3.12 ng/ml.

Statistical analysis

PCA and multidimensional scaling (MDS) were performed using Bionumerics version 6.6

(Applied Maths, ustin, TX) or IBM SPSS version 22 as previously described [13]. Briefly, the

inputs into PCA and MDS were a covariance matrix and a similarity matrix, respectively.

Similarity matrices were constructed from all possible pairwise similarities calculated using

Canberra distances (Eq 1). PCA reduces the number of variables by condensing correlated

variable. Therefore, correlation between some of the variables must exist for the analysis to

be meaningful. The presence of correlated variables was tested by Bartlett’s test of sphericity

with a p-value threshold of <0.001. Kaiser-Meyer-Olkin (KMO) measure was used to test

adequacy of the sample sizes. The number of statistically significant components in PCA

was determined using Parallel Analysis (Monte Carlo simulation) using Brian O’Connor’s

syntax for SPSS27.

D ¼
1

n
Pn

i¼1

jXi � Yij
jXi þ Yij

Eq 1

Where: “D” is the Canberra distance metric, “n” is the number of variables, “i” is the ith

variable, and “X” and “Y” are two participants.

Hierarchical clustering was performed using Bionumerics version 6.6 as previously

described [13]. Briefly, pairwise similarities were calculated using Canberra distances and den-

drograms were constructed using Unweighted Pair Group Method with Arithmetic Mean

algorithm. A two-tailed t-test was used to determine the significance of differences observed in

biomarker values between autistic and control participants. A p-value of<0.05 was considered

significant. T-test was performed using GraphPad Prism version 6 (GraphPad Software, Inc.,

La Jolla, CA). Correlation was estimated by Spearman Correlation Coefficient, and a p-value is

assigned based on permutation analysis. Correlation analyses were performed using GraphPad

Prism version 6. For analyses involving computation of a Z-score, Z-scores were calculated
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according to the formula of Eq 2 using Excel.

Z ¼
ðX � mÞ

s
Eq 2

Where Z is the Z-score, X is the observed value, μ is the mean, and σ is the standard

deviation.

Results

Initial evaluation of the data

Nine biomarkers were evaluated in 13 autistic participants and 24 age-matched healthy con-

trols, and they were all significantly different between the two groups. We selected five ratios

between pairs of physiologically related biomarkers that were different between the autistic

and control groups to test their potential in predicting ASD (Fig 1).

Based on the nine biomarkers alone, the five ratios alone, or all biomarkers and ratios com-

bined, both PCA and multidimensional scaling (MDS) showed complete separation of autistic

and control participants (Fig 2). Bartlett’s test of sphericity showed that correlations between

Fig 1. Differences between autistic individuals (n = 13) and aged-matched healthy controls (n = 24) with regard to 9 biomarkers and 5

biomarker ratios. K: potassium, Na: sodium, LDH: lactate dehydrogenase, GSH: glutathione, GST: glutathione S-transferase, CK: creatine kinase,

CoQ10: co-enzyme Q10, Cas7: caspase 7, and MLTN: melatonin. Statistical significance was determined using a two-tailed student’s t-test.

https://doi.org/10.1371/journal.pone.0227626.g001
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variables do exist with extremely small p values (2 × 10−61 to 8 × 10−6), which confirmed the

appropriateness of using PCA.

Fig 2. Complete separation of autistic individuals (n = 13) and age-matched healthy controls (n = 24) using principal component

analysis (PCA) and multidimensional scaling (MDS). The 9 biomarkers used (top row) were potassium (K), sodium (Na), lactate

dehydrogenase, glutathione (GSH), glutathione S-transferase (GST), creatine kinase (CK), co-enzyme Q10 (CoQ10), caspase 7 (Cas7), and

melatonin (MLTN). The 5 ratios (middle row) were K:Na, GST:GLTN, CK:Cas7, CoQ10:Cas7, and Cas7:MLTN. A combined profile

including the 9 biomarkers and the 5 ratios was also tested (bottom row).

https://doi.org/10.1371/journal.pone.0227626.g002
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The results of the KMO measure of sampling adequacy indicated that a larger sample size

was needed for PCA. Groups were mainly separated on the first component (shown in Fig 2

on the × axes), which was shown to be significant using Monte Carlo simulation (Fig 3).

In addition to MDS results, which completely agreed with PCA results, we wanted to con-

firm further the unbiased partitioning of autistic and healthy participants using hierarchical

clustering. In Fig 4, we show complete separation between the autistic and control groups

using hierarchical clustering based on nine biomarkers, five biomarker ratios, or a combined

profile (Fig 4).

Evaluating the predictive power of biomarkers based on the area under a receiver operating

characteristic (ROC) curve (AUC). From the data shown in Table 2 and Fig 5, it is clear that

caspase 7 (Cas7) was a very strong predictor of ASD, with an AUC of 1.00, which is equivalent

to 100% specificity and 100% sensitivity. Glutathione S-transferase (GST) and potassium (K)

Fig 3. Verification of the suitability of using principal component analysis (PCA). Scree plots were generated using Monte Carlo simulation.

The eigenvalues of individual principal components computed from the observed (raw) data were compared to the corresponding simulated

eigenvalues. Statistically significant principal components have greater eigenvalues than the corresponding 50th and 95th percentile simulated

eigenvalues. Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy was used to evaluate sample size. Bartlett’s test of sphericity was used to

reject the null hypothesis that the correlation matrices used in PCA were equal to an identity matrix. The p values shown represent the likelihood

that the null hypothesis is true. The scree plots correspond to PCA results shown in Fig 2.

https://doi.org/10.1371/journal.pone.0227626.g003
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were among other strong predictors of ASD with AUCs of 0.97 and 0.81, respectively. All

other biomarkers were at least reasonable predictors with AUCs ranging from 0.71 to 0.76.

Using ratios did not seem beneficial since it either lowered or did not affect AUC values. For

example, Cas7 had an AUC of 1.00, which is equal to or greater than the AUC obtained with

any ratio of any other analyte to Cas7 (Table 2, Fig 5). On the other hand, combining biomark-

ers into profiles using PCA appeared to boost AUC values. PCA was performed on groups of

biomarkers and biomarker ratios; and the loadings of the first component (PC1)—the compo-

nent on whose coordinates autistic and control participants were separated were used—as the

predictor in ROC analysis. We obtained an AUC of 1.00 when using all 9 biomarkers, 5 ratios,

or the biomarkers and ratios combined. Since Cas7 and its ratio to melatonin both showed an

AUC of 1.00 when tested individually, it was not clear if lumping them with additional vari-

ables in a profile had any advantage. For this reason, we created a 7-biomarker profile lacking

both Cas7 and GST, which also had a notably high AUC. Doing so resulted in an AUC of 0.94,

which is greater than the AUCs obtained using any of the 7 individual biomarkers alone.

Fig 4. Hierarchical clustering of participants based on 9 biomarkers, 5 biomarker ratios, or both. Data were collected from 13 autistic patients

and 24 age-matched controls. Pairwise similarities were based on Canberra distances (Eq 1) and dendrograms were constructed using the

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) algorithm. K: potassium, Na: sodium, LDH: lactate dehydrogenase, GSH:

glutathione, GST: glutathione S-transferase, CK: creatine kinase, CoQ10: co-enzyme Q10, Cas7: caspase 7, and MLTN: melatonin.

https://doi.org/10.1371/journal.pone.0227626.g004
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Evaluating the predictive power of biomarkers using library-based

assignment

Cas7 was the only biomarker that achieved 100% rate of correct assignment (RCA) in both

autistic and control groups. GST was the next best with 91% overall RCA. Consistent with our

ROC analysis results, there was no consistent benefit gained by combining biomarker pairs in

Table 1. Summary of participants’ data. Recruited volunteers included 24 healthy controls (identification numbers begin with the letter C) and 13 autistic patients (iden-

tification numbers begin with the letter A). CARS: Childhood Autism Rating Scale, K: potassium (mmol/L), Na: sodium (mmol/L), LDH: lactate dehydrogenase (U/L),

GSH: glutathione (μmol/mL/min), GST: glutathione S-transferase (U/L), CK: creatine kinase (U/L), CoQ10: co-enzyme Q10 (ng/mL), Cas7: caspase 7 (pg/mL), MLTN:

melatonin (pg/mL).

ID Age in years CARS K Na LDH GSH GST CK CoQ10 Cas7 MLTN K:Na GST:GSH CK:Cas7 CoQ10:Cas7 Cas7:MLTN

C1 5 40 149 132 22 8 13 21 81 793 0.27 2.74 0.16 0.26 0.1

C4 4 30 157 554 25 9 10 48 69 869 0.19 2.83 0.14 0.69 0.08

C6 7 35 163 138 60 6 13 16 73 833 0.22 9.36 0.18 0.22 0.09

C9 7 39 154 152 17 6 53 2 83 826 0.25 2.64 0.65 0.03 0.1

C10 5 25 159 488 29 9 17 21 71 676 0.16 3.01 0.24 0.29 0.1

C15 9 39 131 79 16 6 17 28 81 836 0.3 2.8 0.21 0.35 0.1

C16 7 29 162 99 60 7 10 12 84 719 0.18 8.76 0.12 0.14 0.12

C19 9 32 209 105 64 5 10 45 79 882 0.15 11.86 0.13 0.57 0.09

C25 6 28 126 285 8 2 20 9 86 777 0.23 4.8 0.23 0.11 0.11

C29 9 26 127 165 23 3 13 14 70 796 0.2 7.45 0.19 0.21 0.09

C34 8 31 240 125 5 5 13 32 86 842 0.13 0.97 0.15 0.37 0.1

C35 5 30 181 290 8 1 17 7 88 636 0.17 5.14 0.19 0.08 0.14

C36 6 27 119 224 14 8 50 31 66 584 0.23 1.71 0.75 0.47 0.11

C37 7 26 140 277 24 8 53 4 82 829 0.19 3.19 0.65 0.05 0.1

C38 7 35 153 99 4 7 40 21 83 808 0.23 0.65 0.48 0.25 0.1

C39 5 31 131 270 8 7 23 48 72 793 0.24 1.18 0.32 0.67 0.09

C43 5 29 152 171 10 7 60 16 78 869 0.19 1.38 0.77 0.2 0.09

C46 11 34 76 158 55 10 13 2 79 833 0.45 5.26 0.17 0.03 0.1

C47 8 38 75 231 56 9 10 21 69 826 0.52 6.15 0.15 0.3 0.08

C49 7 31 245 224 55 8 43 28 74 676 0.13 6.64 0.58 0.38 0.11

C50 5 24 72 13 54 8 7 12 75 836 0.34 6.58 0.09 0.16 0.09

C51 2 28 139 224 51 4 7 45 65 719 0.2 11.62 0.1 0.69 0.09

C52 9 32 208 132 38 8 23 6 70 882 0.15 4.67 0.33 0.08 0.08

C54 5 33 188 171 62 9 23 9 71 740 0.18 7.02 0.33 0.13 0.1

A1 5 44 29 148 257 23 30 37 34 359 848 0.19 0.76 0.1 0.09 0.42

A4 4 42 26 149 218 9 10 7 22 366 848 0.17 0.91 0.02 0.06 0.43

A19 9 49 31 176 138 6 18 30 22 372 839 0.18 0.33 0.08 0.06 0.44

A22 9 35 28 167 257 12 12 33 17 386 817 0.17 0.99 0.09 0.04 0.47

A29 9 40 29 125 415 6 12 47 19 349 940 0.23 0.53 0.13 0.05 0.37

A34 30 31 126 521 7 12 27 45 340 823 0.25 0.58 0.08 0.13 0.41

A36 6 35 14 208 257 20 9 40 26 305 845 0.07 2.18 0.13 0.08 0.36

A37 7 36 21 200 382 15 10 50 50 279 888 0.1 1.39 0.18 0.18 0.31

A39 5 33 25 351 396 12 10 43 42 438 912 0.07 1.24 0.1 0.1 0.48

A46 11 32 26 225 171 16 11 20 53 377 814 0.12 1.44 0.05 0.14 0.46

A47 8 41 26 283 198 11 11 43 39 295 817 0.09 1 0.15 0.13 0.36

A50 5 30 18 218 356 11 9 30 27 290 842 0.08 1.2 0.1 0.09 0.35

A51 2 39 28 276 468 12 10 47 24 310 817 0.1 1.23 0.15 0.08 0.38

https://doi.org/10.1371/journal.pone.0227626.t001
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ratios. For example, like Cas7 alone, Cas7:melatonin (MLTN) ratio yielded a 100% overall

RCA, but creatine kinase (CK):Cas7 and co-enzyme Q10 (CoQ10):Cas7 ratios had overall

RCAs of 80% and 69%, respectively. Furthermore, potassium (K) and sodium (Na) had slightly

lower RCAs than that of the K:Na ratio in the control group, but K had an equal RCA to that

of K:Na ratio in the autistic group. Using biomarker profiles, however, increased the RCA to

100% independently of whether the profiles contained 9 biomarkers, 5 ratios, or both (Fig 6).

Discussion

Neurological disorders are known to induce alterations in concentrations, regulation ratios,

and total profiles of different metabolites or biomarkers that could be used to diagnose or dis-

tinguish different diseases. Metabolic ratios between concentration levels of related metabolites

have been used to describe different biological states in human populations. Taking into

account all the heterogeneous etiological mechanisms of ASD, it is reasonable that biomarker

ratios together with biomarker profile hold the potential to be more discriminatory than

assessing any of the individual biomarkers alone [31–33].

In neurodevelopmental disorders such as ASD, early disease detection is a crucial step in

patient care. Therefore, avoiding delayed diagnosis is essential but the absence of sensitive and

specific biomarkers makes ASD very challenging [8]. Various classes of protein biomarkers in

blood plasma, especially early in life, are promising tools for early detection of ASD. Among

the repeatedly etiological mechanisms leading to ASD is mitochondrial dysfunction. Combin-

ing prospective biomarkers and targeted intervention strategies in clinical trials for ASD offers

a promising method for controlling the heterogeneity of enrolled participants, which may

increase the power of studies to identify favorable effects of intervention while also improving

our understanding of this disorder [34].

Table 2. Estimating the predictive power of variables using the area under a receiver operating characteristic curve (AUC). The p value indicates asymptotic signifi-

cance with the null hypothesis being that the true AUC is equal to 0.5. The far-right column shows whether the variable is elevated or decreased in autistic patients (ASD)

compared to healthy controls. PC1: first principal component in a principal component analysis used as a multivariate biomarker profile. The number of individual bio-

markers used in each profile is indicated. The 9 biomarkers (K, Na, LDH, GLTN, GST, CK, CoQ10, Cas7, and MLTN); 7 biomarkers (K, Na, LDH, GSH, CK, CoQ10, and

MLTN); 5 ratios (K:Na, GST:GLTN, CK:Cas7, CoQ10: Cas7, and Cas7:MLTN); 9 biomarkers and 5 ratios; or K, GST, and Cas7.

Variable AUC p value In ASD

Potassium (K) 0.813 0.001923 Decreased

Sodium (Na) 0.71 0.037175 Elevated

K:Na ratio 0.803 0.002643 Decreased

Lactate dehydrogenase (LDH) 0.758 0.010436 Elevated

Glutathione (GSH) 0.756 0.010923 Decreased

Glutathione S-transferase (GST) 0.973 0.000003 Elevated

GST:GSH ratio 0.91 0.000047 Decreased

Creatine kinase (CK) 0.716 0.031757 Elevated

Co-enzyme Q10 (CoQ10) 0.744 0.015611 Elevated

Caspase 7 (Cas7) 1 <0.000001 Elevated

Melatonin (MLTN) 0.739 0.01778 Elevated

CK:Cas7 ratio 0.893 0.000097 Decreased

CoQ10: Cas7 ratio 0.798 0.003089 Decreased

Cas7:MLTN ratio 1 <0.000001 Elevated

PC1 9 biomarkers 1 <0.000001 Elevated

PC1 7 biomarkers 0.936 0.000015 Elevated

PC1 5 ratios 1 <0.000001 Elevated

PC1 9 biomarkers + 5 ratios 1 <0.000001 Elevated

https://doi.org/10.1371/journal.pone.0227626.t002
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In the present study, in spite of the heterogeneity of the data of the selected variables, Fig 1

presents high significant differences between patients with autism and control participants for

the 9 absolute and the 5 relative variables, which are all directly or indirectly related to mito-

chondria function.

This study uses PCA and clustering methodology to measure the role of mitochondrial dys-

function—related variables in discriminating between individuals with ASD and matched con-

trol participants. The data give a valued addition to the biomarker field by providing a unique

shift from an absolute to a relative perspective in understanding and relating mitochondrial

dysfunction to ASD. Fig 2 shows the appropriateness of both PCA and MDA in separating

autistic patients from controls, using nine biomarkers, five biomarker ratios, or a combination

profile.

A ratio was created with K+ to Na+, as these ions are part of the Na+/K+ ion pump (ATPase),

a component of the mitochondria respiratory chain known to be negatively correlated with

lipid peroxides as marker of oxidative stress, another etiological mechanism in ASD [35–36].

Fig 5. Receiver operating characteristic analysis to evaluate the predictive power of individual and multivariate combined biomarkers using

the area under a receiver operating characteristic curve (AUC) method. 9M: 9-biomarkers (K, Na, LDH, GLTN, GST, CK, CoQ10, Cas7, and

MLTN); 5R: 5 ratios (K:Na, GST:GLTN, CK:Cas7, CoQ10:Cas7, and Cas7:MLTN); 9M/5R: 9 biomarkers and 5 ratios; and 7M: 7 biomarkers (K,

Na, LDH, GSH, CK, CoQ10, and MLTN). PC1: first principal component in a principal component analysis used as a multivariate biomarker

profile.

https://doi.org/10.1371/journal.pone.0227626.g005

Novel biomarkers in autism

PLOS ONE | https://doi.org/10.1371/journal.pone.0227626 January 16, 2020 12 / 18

https://doi.org/10.1371/journal.pone.0227626.g005
https://doi.org/10.1371/journal.pone.0227626


Fig 6. Estimating the predictive power of variables using library-based assignment. A library containing 12–13� autistic and 23–24� healthy

participants was used for identification. K: potassium, Na: sodium, LDH: lactate dehydrogenase, GLTN: glutathione, GST: glutathione S-

transferase, CK: creatine kinase, CoQ10: co-enzyme Q10, Cas7: caspase 7, MLTN: melatonin, RCA: rate of correct assignment, and ASD: autism

spectrum disorder. �To identify any given participant, the participant was removed from the library and then submitted as unknown. Accordingly,

autistic participants were identified against a library of 12 autistic and 24 control participants, while control participants were identified using a

library of 13 autistic and 23 healthy participants.

https://doi.org/10.1371/journal.pone.0227626.g006
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Mitochondria as organelles lack the ability to synthesize reduced glutathione (GSH), use

numerous antioxidants to scavenge free radicals and be protected against oxidative stress. This

highlights the critical role of GSH mitochondrial import carriers for normal function [37–38].

In case of GSH depletion, the vulnerability of mitochondria to oxidative stress is increased and

mitochondrial dysfunction occurs [38]. In the present study, the significantly lower GSH:GST

ratio in autistic patients compared to controls suggests the role of GSH and GST, as non-enzy-

matic and enzymatic antioxidants respectively, in mitochondrial dysfunction, which may

underlie the etiological mechanism of ASD. This can find support in the present study of

Faber et al [39] in which they reported much higher total glutathione and much lower glutathi-

one status (GSH/GSSG) in patients with ASD due to chronic exposure to environmental

toxins.

Creatine is partially synthesized in mitochondria by creatine kinase (CK), which provides

the energy buffer to sustain cellular energy homeostasis [40, 41]. The brain, as a high-energy

demand organ, is rich in creatine and has a large number of mitochondria. Under mitochon-

drial dysfunctional stress, creatine synthesis and utilization are usually disturbed, with creatine

possibly cleared in the blood. The remarkably higher plasma CK and lower CK:Cas7 ratio pre-

sented in Fig 1 and used for the PCA (Fig 2) can help to suggest the role of mitochondrial dys-

function in apoptosis as another etiological mechanism of ASD presented in the present work

by caspase 7. This explanation can find support in the recent work of Castora [24] which prove

that, in ASD, there are often deficits in respiratory chain complexes that can reduce ATP gen-

eration and produce increased levels of reactive oxygen species (ROS) which activates the

mitochondrial permeability transition pore (mPTP) and the release of cytochrome c, prompt-

ing apoptosis.

In PCA, observed variables are replaced by artificial variables (principal components). The

goal is to condense observed variables into fewer PCs that account for as much variance as pos-

sible. This results in a model drawn in a new set of coordinates, the PCs, where observed vari-

ables contribute to each PC. There are a couple of problems with this manipulation: 1) in the

total absence of correlation between all observed variables, there is no way to condense them

into fewer ones in any meaningful way, and 2) some level of uncertainty and lack of confidence

is created unless we have a way to evaluate the model. The first problem is addressed by Bart-

lett’s test of sphericity, which computes a p-value representing the probability of a total lack of

correlation in the dataset to be analyzed. We show that this was not an issue in our study,

given the very low p-values obtained. PCA is not meaningful with large p-values. The second

problem is addressed by Monte Carlo simulation, which iteratively demonstrates the reliability

of each PC by generating an eigenvalue at the 50th and 95th percentile levels of confidence. Any

meaningful PC’s actual eigenvalue should exceed the 50th percentile eigenvalue generated by

the iteration process, but a “good” PC should also exceed the 95th percentile iterative eigen-

value. In our data, PC1 exceeded the 95th percentile eigenvalue in all experiments. In addition,

PC1 was the most differential PC between autistic and control subjects. We must mention,

however, that according to KMO test of sampling adequacy, a larger sample size was most

probably needed for our analysis. On the other hand, consistency between the results of PCA,

MDS, and hierarchical clustering in showing the unmistakable efficiency of our biomarker

profile in differentiating between autistic and control subjects, led us to conclude that our bio-

marker profile is at least highly promising.

It is well known that CoQ10 is essential for supporting mitochondrial functions such as

shuttling electrons, serving as a potent antioxidant, and working as an electron transport chain

to generate ATP [42]. In spite of the elevated level of CoQ10 in the plasma of autistic children,

the remarkably lower value of CoQ10:Cas 7 (Table 1) can provide biochemical proof for a

mitochondrial role in the pathogenesis of ASD [24,43].
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The significantly higher Cas7:MLTN in individuals with ASD compared to control, in spite

of the significant increase of plasma melatonin, can be explained on the basis that through the

disrupted blood brain barrier (BBB) in ASD, melatonin can passively pass from the brain to

blood. As high levels of ventricular fluid melatonin are critically needed to protect ventricular-

contacting, neural tissue against oxidative stress, efflux of melatonin from brain to blood

through the disrupted BBB can be easily related to apoptosis, which occurs in these active neu-

ronal populations.

This might explain the high predictive value of MLTN, Cas 7, and Cas:MLTN, with AUCs

of 0.739, 1.0, and 1.0 respectively [44,45]. This can be supported through considering the work

of Braam et al [45] which shows a possible relationship between low melatonin metabolism

and ASD clinical presentation.

In conclusion, the present study helps to better understand the etiology of ASD, on the

basis of the profile of the studied combined biomarkers, which present oxidative stress, energy

metabolism, mitochondrial dysfunction, and apoptosis as possible etio-pathological mecha-

nisms. This would enable integration of highly predictive disease biomarkers with existing

knowledge and hypothetically provide further awareness on the impaired biological pathways.

The availability of improved predictive power by combining biomarkers into profiles that can

be measured using simple, non-invasive procedures would be beneficial for better recognition

of the biological pathways altered in ASD and could be used for an early diagnosis of and early

intervention for this neurodevelopmental disorder [13, 46].
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