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Abstract
Effective biomarkers are urgently needed to facilitate early diagnosis of autism spectrum disorder (ASD), permitting early
intervention, and consequently improving prognosis. In this study, we evaluate the usefulness of nine biomarkers and their
association (combination) in predicting ASD onset and development. Data were analyzed using multiple independent mathe-
matical and statistical approaches to verify the suitability of obtained results as predictive parameters. All biomarkers tested
appeared useful in predicting ASD, particularly vitamin E, glutathione-S-transferase, and dopamine. Combining biomarkers into
profiles improved the accuracy of ASD prediction but still failed to distinguish between participants with severe versus mild or
moderate ASD. Library-based identification was effective in predicting the occurrence of disease. Due to the small sample size
and wide participant age variation in this study, we conclude that the use of multi-parametric biomarker profiles directly related to
autism phenotype may help predict the disease occurrence more accurately, but studies using larger, more age-homogeneous
populations are needed to corroborate our findings.
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Introduction

Autism spectrum disorder (ASD) is a complex neuro-behavioral
syndrome usually described as a heterogeneous group of
neurodevelopmental disorders, which is believed to affect about
1:68 children just only in US population (Christensen et al.
2016) and 1:160 pediatric subjects globally in the world
(Elsabbagh et al. 2012). Standardized ASD diagnostic criteria
were published and recently reviewed in the World Health
Organization’s International Classification of Diseases (ICD-11
will be published in 2018) and the American Psychiatric

Association’s Diagnostic and Statistical Manual, fifth edition
(DSM-5) (APA 2013). Central issues to these criteria are im-
paired social development, communication deficits, and patho-
logical lack of flexibility or Binsistence on sameness^ (Volkmar
and Reichow 2013). Current diagnosis practices are based on
phenotypic characterizations that rely on standardized scoring
systems. These diagnostic methodologies have been vital for
advancing clinical practice and research, but fall short of en-
abling early diagnosis and preclinical disease prediction. ASD-
associated deficits are commonly recognized in children during
their first 12 to 24months of age (Zwaigenbaum et al. 2015), but
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a reliable diagnosis is often made at 3 years of age or later
(Woolfendena et al. 2012; Steffenburg et al. 2018; Sharma et
al. 2018).

It is widely accepted that early diagnosis provides valuable
opportunities for primary intervention and better prognosis in
ASD (Boyd et al. 2010; Debodinance et al. 2017). Therefore, it
is particularly advantageous being able to predict ASD before
the onset of prodromal signs and symptoms, a goal that is not
currently attainable in the absence of suitable biomarkers
(Sices et al. 2017). Biomarkers are measurable outputs that
indicate the presence of a disease or an outcome, including
biochemical analytes and imaging data. In ASD diagnosis,
biochemical analytes are typically measured in body fluids
(e.g., blood, urine, saliva, and cerebrospinal fluid); they are
easy to measure, cost-effective, and do not often require inva-
sive procedures (Mayeux 2004; Nunes et al. 2015; Beversdorf
and Missouri Autism Summit Consortium 2016). The very
recent years have witnessed an increasing interest in the search
for suitable biomarkers for the early diagnosis of ASD (Daniels
and Mandell 2014; Uddin et al. 2017; Prata et al. 2017).

It is noteworthy that ASD is caused by the combined
action of various genetic, epigenetic, and environmental fac-
tors, rather than a single mutation or a single simple patho-
genetic cause or mechanism (Volkmar and Reichow 2013;
Beversdorf and Missouri Autism Summit Consortium 2016).
Consequently, even a single, non-polymorphic defined phe-
notype might be caused by multiple panoplies of different
underlying mechanisms, which may trigger an effective and
safe treatment in one patient but not necessarily in another
one (Volkmar and Reichow 2013). On the one hand, the
remarkable genetic heterogeneity of ASD may raise a chal-
lenge that may hamper the search for a more general and a
wider ASD biomarker collection (Geschwind and Levitt
2007; Khramova et al. 2017). On the other hand, class-
specific biomarkers may guide a better understanding of
the underlying mechanisms of ASD, thus providing a tool
for tailoring therapeutic strategies to specific classes of ASD
patients (Loth et al. 2016).

In the present study, we reappraised and re-analyzed
previously published data (Alabdali et al. 2014a, b) using
a different mathematical approach, to highlight new im-
portant insights on ASD biomarkers. Unlike our previ-
ously reported investigations, none of the participants
was needed to be excluded as a possible outlier in the
current study. We used principal component analysis
(PCA) to verify the authenticity of the classification of
participants based on selected biomarkers and used mul-
tiple statistical tests to verify the obtained results. More
importantly, we evaluated the effect of using multiple
biomarkers simultaneously on the accuracy of predicting
disease occurrence, an approach previously suggested as
a way to improve prediction accuracy (Gupta et al. 2013;
Abruzzo et al. 2015).

Methods

Participants

Participants enrolled in the present study were previously de-
scribed (Alabdali et al. 2014a, b). Briefly, 58 male autistic
patients ranging in age from 3 to 12 years (mean 7.0 ± 2.34
SD) were recruited through the Autism Research and
Treatment Centre, Faculty of Medicine, King Saud
University, Riyadh, Saudi Arabia. Patients enrolled in the
study were diagnosed with ASD according to the fourth edi-
tion of the Diagnostic and Statistical Manual of Mental
Disorders and further updates (APA 2000; Sharma et al.
2018; Galiana-Simal et al. 2018). A number of 32 age- and
gender-matched control participants (mean age 7.2 ± 2.14 SD)
were recruited from children who came to the Well Baby
Clinic at King Khalid University Hospital for routine
checking. Control subjects did not show any signs
or symptoms of infectious diseases or neuropsychiatric disor-
ders. All participants had normal erythrocyte sedimentation
rates and urine analysis results. The Ethical Committee of
the Faculty of Medicine, King Saud University approved the
present study. Participants’ parents or legal tutors signed in-
formed consents before any sample were collected. The ex-
perimental design of the whole research study was consistent
with the principles of the Declaration of Helsinki (General
Assembly of the World Medical Association 2014).

Measures of Disease Severity Among Autistic Patients

Disease severity was measured using the Childhood Autism
Rating Scale (CARS) and the Social Responsiveness Scale
(SRS) (Chen et al. 2018). To obtain a CARS score, each child
was rated on a scale ranging from 1 (normal) to 4 (severely
abnormal) with respect to each of 15 criteria (relating to
others; imitation; emotional response; body use; object use;
adaptation to changing; visual response; listening response;
taste, smell, and touch responses; fear and nervousness; verbal
communication; non-verbal communication; activity level;
level and reliability of intellectual responses and general im-
pressions). A final score was obtained by computing the sum
of the 15 individual scores, resulting in a combined score that
could range from 15 to 60. Scores below 30 were considered
non-autistic; 30–36.5 were considered mild to moderate au-
tism and scores greater than 36.5 were considered severe au-
tism (Mick 2005). SRS scores were generated from the results
of a questionnaire, with scores ranging from 60 to 75 consid-
ered mild to moderate, and scores of 76 or greater considered
severe autism (Constantino et al. 2003). Patients with a history
of epileptic seizures, obsessive-compulsive disorder, fragile X
syndrome, or any psychiatric or neurologic disorder other than
autism were excluded from the study.
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Biomarker Data Collection

Blood samples were treated as previously described (Alabdali
et al. 2014a, b). Briefly, whole blood specimens were collected
by venipuncture using heparin as an anticoagulant. Plasma and
red blood cells were separated by centrifugation and stored at
– 80 °C until used. Biomarkers were properly selected to rep-
resent various physiological processes with established links to
ASD. Serotonin, gamma-aminobutyric acid (GABA), and do-
pamine are related to brain neurochemistry; the hormone oxy-
tocin has been shown to improve social interactions in ASD
patients (Yatawara et al. 2016); interferon-gamma-inducible
protein-16 (IFI16) is associated with neuroinflammation and
ASD (Alabdali et al. 2014b) and glutathione-S-transferase
(GST), vitamin E, mercury, and lead are markers associated
with xenobiotic toxicity and their scavenging by detoxification
and antioxidant enzyme complex have also been associated
with ASD (Alabdali et al. 2014b). All analytes, except for lead
andmercury, weremeasured in plasma. Lead andmercury were
measured in red blood cells. Experimental procedures used to
measure these analytes have been described elsewhere
(Alabdali et al. 2014a, b). Raw data are shown in Tables 1
and 2.

Assessing the Accuracy of Prediction

Two methods were employed to evaluate the accuracy of
biomarker-based predictions of binary clinical outcomes (e.g.,
autism versus healthy control or having severe versus mild/
moderate disease). One method relies on calculating the area
under a ROC curve (AUC). Receiver operating characteristic
(ROC) curves are generated by graphing biomarker sensitivity
on the vertical axis and specificity subtracted from one (1—
specificity) on the horizontal axes for all possible biomarker
values. The aim is to graphically illustrate the trade-off between
sensitivity and specificity at all possible cut-off values of a
continuous biomarker. A biomarker with perfect sensitivity
and specificity is the one that yields an AUC of 1.0, while a
useless biomarker yields an AUC of 0.5. An AUC of 0.5 indi-
cates that the predictions made using the biomarker are equiv-
alent to chance or random guessing. AUC values below 0.5
should indicate that the predictions made using the biomarker
are more often false than true (Perlis 2011). The second method
is a library-based identification, which relies on comparing sub-
jects of unknown classification to a library of subjects of known
classification. Therefore, a library must be constructed with
subjects organized into units of unique classifications. Each of
the libraries used in the current study contained 2 units, one for
autistic and the other for healthy control participants. Unknown
participants were then submitted for identification by determin-
ing the library unit to which the unknown subject is most sim-
ilar. Similarity can be determined using various coefficients. In
the present study, pairwise similarities were calculated using

Canberra distances (Eq. (1)), and matching to a library unit
was accomplished using the K-nearest neighbor algorithm.
Using this algorithm, a user-defined number of top matches is
determined for each unknown, and the unknown is simply
assigned to the unit containing the largest number of those top
matches. This number becomes a score that can be used as a
measure of confidence in the identification process. It was in the
present study based on the top five most similar library entries,
giving rise to scores ranging from 0 to 5.

Designing Biomarker Profiles

In the present study, data for each of the nine investigated
variables (biomarkers) were available for some but not all
participants (Tables 1 and 2). To maximize the use of partici-
pants and variables, five biomarker profiles were constructed.
Profile 1 contained all variables and only those participants
with nomissing data for any of the nine variables (10 controls,
six autistics). Similarly, profile 2 contained eight variables (25
controls, nine autistics), profile 3 contained seven variables
(25 controls, 20 autistics), profile 4 contained six variables
(25 controls, 21 autistics), and profile 5 contained five vari-
ables (30 controls, 40 autistics).

Statistical Analysis

Data were expressed as means ± SD (standard deviations).
Statistical analysis of quantitative data was performed using
a nonparametric test. An ANOVAwith a two-tailed t test was
used to determine the significance of differences observed in
biomarker values between autistic and control participants. A
p value of < 0.05 was considered significant.

PCA and multidimensional scaling (MDS) were performed
using Bionumerics version 6.6 (Applied Maths, Austin, TX)
or IBM SPSS version 22 as previously described (El-Ansary
et al. 2016). Briefly, the inputs into PCA and MDS were a
covariance matrix and a similarity matrix, respectively.
Similarity matrices were constructed from all possible
pairwise similarities calculated using Canberra distances
(Eq. (1)). PCA reduces the number of variables by condensing
correlated variables. Therefore, the correlation between some
of the variables must exist for the analysis to be meaningful.
The presence of correlated variables was tested by Bartlett’s
test of sphericity (Bartlett 1937), with a p value threshold of <
0.001. Kaiser-Meyer-Olkin (KMO) measure was used to test
the adequacy of the sample sizes (Kaiser 1974; Tomlinson et
al. 2013). The number of statistically significant components
in PCAwas determined using parallel analysis (Monte Carlo
simulation) using Brian O’Connor’s syntax for SPSS
(O’Connor 2000).

D ¼ 1

n
∑n

i¼1

Xi−Yij j
Xiþ Yij j ð1Þ
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where BD^ is the Canberra distance metric, Bn^ is the number
of variables, Bi^ is the ith variable, and BX^ and BY^ are the
two participants.

Hierarchical clustering was performed using Bionumerics
version 6.6 as previously described (El-Ansary et al. 2016).
Briefly, pairwise similarities were calculated using Canberra
distances, and dendrograms were constructed using un-
weighted pair group method with arithmetic mean algorithm.
A two-tailed t test was used to determine the significance of
differences observed in biomarker values between autistic
and control participants. A p value of < 0.05 was considered
significant. A t test was performed using GraphPad Prism

version 6 (GraphPad Software, Inc., La Jolla, CA). The cor-
relation was estimated by Spearman correlation coefficient,
and a p value is assigned based on permutation analysis.
Correlation analyses were performed using GraphPad Prism
version 6. For analyses involving computation of a Z-score,
Z-scores were calculated according to the formula of Eq. (2)
using GraphPad software

Z ¼ X−μð Þ
σ

ð2Þ

where Z is the Z-score, X is the observed value, μ is the mean,
and σ is the standard deviation.

Table 1 Collected blood raw data from control participants of each biomarker investigated in the present study

Control participants

ID GABA
(μmol/L)

Dopamine
(ng/L)

Serotonin
(ng/mL)

GST
(μmol/L)

Vitamin E
(nmol/L)

Mercury
(μg/L)

Lead
(μg/dL)

IFI16
(ng/mL)

Oxytocin
(μIU/mL)

Cont_1 0.120 155.10 0.780 3.95 4.05 0.63 66.11

Cont_2 0.007 514.71 166.85 0.328 26.88 5.81 4.94 1.15 125.65

Cont_3 0.440 480.92 199.75 0.967 20.69 4.18 4.12 0.42 132.72

Cont_4 0.024 443.39 223.25 0.475 25.19 5.05 4.99 2.11 203.15

Cont_5 0.052 525.41 218.55 0.672 24.34 5.81 5.89 2.52 60.05

Cont_6 0.112 589.99 239.70 0.634 29.56 5.96 4.06 3.24 59.23

Cont_7 0.320 539.12 213.85 0.508 21.66 4.23 4.17 2.91 201.51

Cont_8 0.160 587.43 223.25 0.593 25.01 5.95 6.05 1.53 134.32

Cont_9 0.004 539.34 216.20 0.546 30.36 5.82 4.24 3.72 74.94

Cont_10 0.104 611.62 190.35 0.578 22.64 6.16 6.10 1.81 150.16

Cont_11 0.216 526.04 129.25 0.459 25.65 3.90 3.99 3.78 125.75

Cont_12 0.300 491.50 192.70 28.96 4.77 5.17 1.21 99.24

Cont_13 0.360 453.15 247.35 27.41 3.86 4.30 1.65 149.92

Cont_14 0.240 203.85 5.77 6.16 4.13 115.86

Cont_15 0.048 167.85 4.45 4.38 3.95 556.99

Cont_16 0.248 536.97 35.25 27.61 5.29 5.22 1.14 120.15

Cont_17 0.200 602.97 119.25 24.28 5.72 4.10 1.81 100.75

Cont_18 0.328 17.16 5.86 4.30 1.23 132.71

Cont_19 0.048 550.98 12.22 26.65 4.95 5.44 1.72 293.53

Cont_20 0.025 600.35 11.52 20.45 3.85 4.29 4.11 136.11

Cont_21 0.360 68.39 6.01 5.53 2.19 120.21

Cont_22 0.072 551.21 108.10 27.63 5.90 4.36 0.88 126.52

Cont_23 0.016 625.07 206.80 26.97 5.80 4.22 2.14 89.87

Cont_24 0.032 537.61 35.25 23.34 5.95 5.44 1.39 49.98

Cont_25 0.240 502.32 68.15 26.35 6.05 4.60 1.81 43.96

Cont_26 0.264 463.12 86.95 24.94 4.51 4.43 1.47 101.92

Cont_27 0.360 548.79 51.70 25.13 3.88 4.33 2.71 100.05

Cont_28 0.280 616.24 82.25 22.09 5.99 4.51 1.73 119.93

Cont_29 0.200 563.10 220.90 24.26 4.42 4.35 4.36 134.13

Cont_30 0.152 613.56 143.35 29.24 4.32 4.26 1.72 94.56

Cont_31 563.33 25.14 4.46 4.39

Cont_32 638.82 24.40 5.19 5.13
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Table 2 Collected blood raw data from autistic subjects of each biomarker investigated in the present study

Autistic participants

ID GABA
(μmol/L)

Dopamine
(ng/L)

Serotonin
(ng/mL)

GST
(μmol/L)

Vitamin E
(nmol/L)

Mercury
(μg/L)

Lead
(μg/dL)

IFI16
(ng/mL)

Oxytocin
(μIU/mL)

Aut_1 0.480 309.06 17.63 12.83 5.51 8.04 3.21 120.15
Aut_2 0.208 77.55 0.344 7.79 8.74 1.91 38.51
Aut_4 0.276 289.65 17.63 0.082 13.94 7.75 5.40 1.78 250.11
Aut_5 0.340 0.426 7.56 6.73 1.76 43.34
Aut_6 0.276 72.85 7.51 7.05 3.27 42.63
Aut_7 0.520 28.20 0.180 7.79 7.65 2.52 103.58
Aut_8 0.180 310.36 0.262 13.28 6.83 7.03 1.91 128.74
Aut_9 0.440 37.60 0.109 7.78 7.75 2.52 26.82
Aut_10 0.356 430.05 17.16 14.33 6.53 6.56 2.47 138.73
Aut_11 0.180 7.99 0.022 5.15 4.92 4.64
Aut_12 0.244 25.85 0.328 6.13 5.65 2.23 149.47
Aut_13 0.180 4.83 4.83 1.92 44.76
Aut_14 0.276 8.93 7.03 6.64 6.35 28.53
Aut_15 0.080 14.34 8.82 8.94 2.27 84.16
Aut_16 0.300 6.16 5.73
Aut_17 0.160 51.70 0.393 4.92 4.55 1.71 65.21
Aut_18 0.184 462.91 35.25 0.088 13.18 4.72 4.83 2.52 48.72
Aut_19 0.292 37.60 6.04 6.03 1.92 25.26
Aut_20 0.300 474.43 6.11 0.088 14.60 5.25 4.82 3.96 26.15
Aut_21 0.276 398.77 39.95 0.360 11.68 7.02 7.16 4.14 142.56
Aut_22 0.265 488.91 15.04 13.29 8.39 4.92 1.55 14.93
Aut_23 0.044 16.22 8.13 4.72 5.51 53.82
Aut_24 0.180 373.25 65.80 16.99 6.91 7.04 3.11 40.63
Aut_25 0.108 14.34 0.278 7.26 7.25 2.27 326.24
Aut_26 0.128 5.50 5.02 3.45 36.42
Aut_27 0.268 369.44 79.90 0.311 12.82 7.89 7.88 3.29 62.51
Aut_28 0.400 417.17 44.65 0.022 20.68 7.08 7.13 3.68 43.32
Aut_29 0.360 414.84 94.01 15.46 7.91 4.91 6.11
Aut_30 0.236 8.12 7.77 1.79 25.75
Aut_31 474.62 21.15 12.34 7.97 7.96 3.21 38.25
Aut_32 8.18 7.59 1.41 61.39
Aut_33 413.04 17.16 16.07 4.77 5.88 1.78
Aut_34 9.87 6.06 6.45 19.63
Aut_35 423.97 12.22 14.07 8.72 7.23 4.56 59.74
Aut_36 379.23 15.93 6.47 8.98 3.81 14.99
Aut_37 370.16 13.87 15.60 7.20 6.71 1.92 27.43
Aut_38 6.89 7.13 1.41 35.52
Aut_39 17.63 8.16 7.72 4.12 151.35
Aut_40 345.59 82.25 15.73 6.90 7.12 2.45 60.51
Aut_41 5.35 4.82 102.31
Aut_42 1.32
Aut_43 23.27 4.71 5.16 1.89
Aut_44 12.93 6.03 5.83 4.61 61.24
Aut_45 404.15 51.70 16.40 8.24 7.67 4.12 64.78
Aut_46 11.52 6.69 6.48 3.77 102.31
Aut_47 11.75 7.87 4.83 3.63 31.02
Aut_48 422.13 32.90 9.83 5.72 6.16 1.54 125.32
Aut_49 82.25 4.90 4.74 3.32 192.56
Aut_50 22.33 4.76 5.15 1.52 25.41
Aut_51 51.70 5.95 5.85 1.79
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Results

The Accuracy of Disease Prediction Using Individual
Biomarkers

Consistent with previously published results (Alabdali et al.
2014a, b), all nine biomarkers significantly differed between

autistic and control groups (Fig. 1). Individual biomarkers
were evaluated for their accuracy in predicting the occurrence
of disease and disease severity using the AUC method. Most
autistic participants had impaired CARS and SRS scores, but
some ended up with a normal score using one of the scoring
methods. Also, a few participants either had a missing score
or were too young to be scored by SRS. For this reason, ROC

Table 2 (continued)

Autistic participants

ID GABA
(μmol/L)

Dopamine
(ng/L)

Serotonin
(ng/mL)

GST
(μmol/L)

Vitamin E
(nmol/L)

Mercury
(μg/L)

Lead
(μg/dL)

IFI16
(ng/mL)

Oxytocin
(μIU/mL)

Aut_52 387.42 35.25 11.65 7.58 5.64 3.53
Aut_53 377.57 11.99 13.19 6.85 7.03 1.77 14.05
Aut_54 7.52 4.60 4.75 3.66 14.12
Aut_55 453.13 12.69 16.45 5.22 4.93 1.54 25.07
Aut_56 538.22 11.75 13.93 6.97 6.73 5.18 39.87
Aut_57 397.78 17.63 18.06 6.70 7.05 1.49 71.06
Aut_58 17.63 7.27 8.82 3.84 141.22
Aut_59 318.62 12.69 12.02 5.22 4.93 1.77 65.13

Fig. 1 Statistical comparisons of
biomarkers. Nine biomarkers
showed significantly different
serum values in autistic and
control participants. Bar graphs
show mean serum values of
gamma-butyric acid (GABA),
dopamine, serotonin, oxytocin,
interferon-gamma-inducible-
protein-16 (IFI16), glutathione S
transferase (GST), vitamin E,
mercury, and lead in autistic and
healthy control participants.
Statistical significance was
estimated using a two-tailed t test
with p values shown in
parentheses. Error bars represent
the standard error of the mean for
each comparison p < 0.05
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curves were generated separately for each of the autistic
participants with impaired CARS and those with impaired
SRS scores. In both groups—henceforth referred to as
CARS and SRS groups—all nine biomarkers effectively
predicted the occurrence of autism, with AUC values falling
between 0.64 and 0.96. Vitamin E was associated with the
largest AUC (0.94), followed by dopamine, serotonin, and
GST (all > 0.8) in the CARS group, while GST had the
largest AUC (0.96), followed by vitamin E, mercury, and
dopamine in the SRS group. GABA, mercury, and IFI16
were the only biomarkers able to predict the occurrence of
severe autism—as determined by SRS scores—with AUC
values ranging from 0.66 to 0.78. None of the tested
biomarkers was able to predict the level of CARS
impairment (Table 3).

Combining Biomarkers (Variables) into Profiles
Improves Disease Prediction

Next, we asked whether grouping the nine biomarkers into
profiles could enhance their predictive power. Five profiles
were designed as described in the methods section; the most
complex of which consisted of nine variables, and the simplest
of five. Employing PCA and MDS in testing these five pro-
files revealed clear segregation of autistic and control partici-
pants, with complete segregation, achieved using profiles of
higher complexity—those with larger numbers of variables.
Before moving forward with further analyses, we thought to
verify several aspects of the PCA analyses. We used Bartlett’s
sphericity test to confirm the presence of correlated variables
and showed that the absence of correlations in our datasets

Table 3 Assessment of prediction accuracy of nine individual biomarkers and five profiles using the area under a receiver operating characteristic
(ROC) curve (AUC)

AUC p -value AUC p -value AUC p -value AUC p -value

GABA 0.650 0.050 0.666 0.028 0.694 0.099 0.783 0.009

Dopamine 0.874 0.000 0.871 0.000 0.394 0.370 0.400 0.392

Serotonin 0.853 0.000 0.760 0.000 0.563 0.456 0.515 0.863

GST 0.839 0.003 0.959 0.000 0.713 0.175 0.750 0.112

Vitamin E 0.936 0.000 0.941 0.000 0.463 0.752 0.655 0.186

Mercury 0.753 0.000 0.923 0.000 0.396 0.178 0.668 0.036

Lead 0.777 0.000 0.808 0.000 0.463 0.631 0.563 0.427

IFI16 0.638 0.028 0.695 0.002 0.525 0.755 0.658 0.050

Oxytocin 0.747 0.000 0.678 0.006 0.612 0.177 0.595 0.271

Profile 1 1.000 0.002 1.000 0.001 nd nd nd nd

Profile 2 0.989 0.000 1.000 0.000 0.300 0.439 0.556 0.796

Profile 3 0.977 0.000 0.960 0.000 0.185 0.043 0.600 0.549

Profile 4 0.977 0.000 0.958 0.000 0.231 0.085 0.556 0.724

Profile 5 0.934 0.000 0.968 0.000 0.415 0.384 0.520 0.859

Profile 1 0.860 0.027 0.900 0.006 nd nd nd nd

Profile 2 0.615 0.334 0.672 0.116 nd nd nd nd

Profile 3 0.766 0.003 0.776 0.003 nd nd 0.500 1.000

Profile 4 0.551 0.571 0.512 0.900 0.569 0.657 0.593 0.556

Profile 5 0.639 0.053 0.704 0.006 0.585 0.384 0.552 0.630

Z-scores

First principal component

Individual markers

SRS

Area under ROC curve

Severe autism - mild or 

moderare autism

Area under ROC curve

Autism - healthy control

CARS SRS CARS

Profiles in this table are represented by either the most discriminatory principal component (eigenvector) coordinates or sum of Z-scores. The prediction
of presence versus absence of disease was assessed in patients with abnormal Childhood Autism Rating Scale (CARS) and those with abnormal scores
on the Social Responsiveness Scale (SRS) (left half of the table). The prediction of severe versus mild or moderate disease was assessed when disease
severity was determined based on CARS and when determined using SRS scores (right half of the table). AUC values with p values equal to or lower
than 0.05 were considered significant (blue), while those associated with higher p values were considered insignificant (pink). AUC values lower than or
equal to 0.65 are highlighted in shades of pink, while values greater than 0.65 are highlighted in progressively darker shades of blue
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was extremely unlikely (p values < 0.0001). In terms of the
adequacy of sample sizes, KMOmeasure of sampling adequa-
cy was employed giving rise to values hovering around 0.7.
The obtained values were consistent with samples of sufficient
sizes for the analyses to be meaningful (Kaiser 1974;
Tomlinson et al. 2013). In terms of the significance of princi-
pal components, Monte Carlo simulation demonstrated that
the first component (PC1) in the analysis of each of the five
biomarker profiles was the only significant component
(Fig. 2). PC1 was the principal component responsible for
most of the segregation between the autistic and control
groups. We then examined the contribution of individual var-
iables to the segregation of autistic and control participants by
comparing their contribution to the principal component re-
sponsible for most of this segregation, in this case, the first
principal component. We found that the markers responsible
for most of the separation between the two groups (e.g., do-
pamine, serotonin, GST, and vitamin E) were the same ones
that had shown relatively large AUCs. Conversely, markers
with small AUCs (e.g., oxytocin and IFI16) did not contribute
nearly as much in separating autistic and control subjects in
PCA analysis (Fig. 3). To further confirm the authenticity of
the segregation between autistic and control participants, we
wanted to use a clustering method that differed in principle
from PCA and MDS. For this purpose, we used hierarchical

clustering, which produced consistent results, further
confirming the genuineness of the segregation between autis-
tic and control participants based on our biomarker profiles
(Fig. 4). We also compared the AUCs obtained using profiles
to those obtained using individual biomarkers. Variables were
combined by using either the coordinates of PC1 from PCA or
the sum of Z-scores as input in ROC curve analyses. When
variables were combined into profiles using PC1 coordinates,
we found that complex profiles had AUCs of one (perfect
sensitivity and specificity), while simpler profiles had slightly
smaller AUCs. In all cases, combining markers led to in-
creased AUCs in both CARS and SRS groups. In our experi-
ence, using the sum of Z-scores did not perform as well as
individual biomarkers or profiles combined using PC1 coor-
dinates (Table 3).

Our results suggested that complex profiles were better in
distinguishing autistic participants from healthy controls and
that was shown using mathematically different approaches.
Next, we wanted to rule out possible confounding factors to
confirm our findings. Although complex profiles outperformed
simpler ones in distinguishing autistic from healthy controls,
the former were tested on a smaller number of participants
(complex profile n = 16–46, simple profile n = 47–71).
Consequently, PCA and MDS plots depicting the results of
low-complexity profiles contained larger numbers of data

Fig. 2 The aptness of the use of principal component analysis (PCA),
adequacy of sample sizes, and statistical significance of principal
components. The suitability of PCA for analyzing various datasets was
determined using Bartlett’s sphericity test. The sample size was evaluated
using the Kaiser-Meyer-Olkin (KMO) test. Statistical significance of

components in PCAwas estimated using Monte Carlo simulation. Scree
plots show eigenvalues of raw (blue), 50th percentile simulated data
(green), and 95th percentile simulated data (yellow). Principal
components with greater raw than 95th percentile simulated eigenvalues
were considered statistically significant
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points than the ones depicting the results of high-complexity
profiles, creating higher density plots for the former compared
to the latter (Fig. 3). Higher plot densities could have contrib-
uted to the partial overlap between autistic and control groups
seen with simple profiles by simply providing more opportu-
nities for overlap due to random chance alone. Thus, further
analyses were performed to interrogate this notion.

Additional Testing Confirms that Higher Complexity
Profiles Yield Better Separation of Autistic
and Control Groups

To investigate whether profile complexity was the principal
underpinning of the observed separation between autistic and
control subjects, two tests were performed. First, all five pro-
files were tested using the same number of participants. To do
so, we used the small group of participants (six autistics, ten
controls) with whom we had a complete dataset covering all

variables. Second, we used group-specific means as surro-
gates for missing data points. In other words, variable means
within a group—either autistic or control—were used to sub-
stitute for missing data points of the corresponding group. The
latter approach enabled the use of a larger number of partici-
pants (58 autistic, 32 control) compared to the former. Both
tests confirmed that profiles of higher complexity enabled
better distinction between autistic and control subjects than
simpler profiles. This was demonstrated by tighter group clus-
tering and wider inter-group distances in PCA and MDS plots
using the 16 participants with no missing data points (Fig. 5).
Using this group of participants for whom missing data were
replaced by the corresponding means, better group separation
was evident using profile 1 (nine variables) compared to pro-
file 5 (five variables), as demonstrated by PCA, MDS, and
hierarchical clustering (Fig. 6). Profiles 2, 3, and 4 were also
tested showing results that supported the same conclusion
(data not shown).

Fig. 3 Biochemical profiles are effectively separating autistic participants
from healthy controls3. Principal component analysis (PCA) and multidi-
mensional scaling (MDS) were employed to test the segregation of autis-
tic and control participants based on five biochemical profiles. The

contributions of variables to the most discriminatory component in
PCA are shown, with the top three most contributing variables in bold
(bottom right)
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The next question we wanted to answer is whether our
biomarker profiles can be used to predict the occurrence of
disease within the population of participants included in the
current study. Library-based identification was employed to
answer this question.

High-Complexity Biomarker Profiles Predict
the Occurrence of Disease with 100% Specificity
and Sensitivity

Library-based identification was used to compare the sensi-
tivity and specificity of autistic patients’ identification, within
the available sample size, using five biomarker profiles. Only
observed data were used in this test (i.e., group means were
not used to fill-in for missing data). We showed that high-
complexity profiles (profiles 1, 2, and 3) resulted in a perfect
identification of both autistic and control participants, while

the rate of correct identification (RCI) ranged from 83 to
96% using simpler profiles. These results stimulated our in-
terest in testing profiles with fewer than five variables, which
we tested by modifying profile 5 to generate new profiles
consisting of all possible combinations of one, two, three,
and four variables. Identification was attempted using each
of these profiles, and RCI was averaged over profiles com-
posed of the same number of variables. The results obtained
showed a progressive decline in RCI as the number of vari-
ables decreased, underscoring the superiority of using bio-
marker profiles over individual markers and that of high-
complexity profiles over simple ones (Fig. 7). For diagnostic
purposes, it would be useful to have some measure of confi-
dence each time an identification is made, in addition to the
predetermined sensitivity and specificity. Using k-nearest
neighbor in library-based identification generates a score,
which we thought might be suitable to serve as this measure

Fig. 4 Segregation of autistic (red) and healthy control (green) subjects in hierarchical clustering based on biochemical profiles. Five profiles composed
of five to nine variables were tested
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of confidence. To test this possibility, we compared the
ranges and averages of the scores associated with correct
identifications to those associated with incorrect identifica-
tions. We found that the average scores associated with in-
correct identifications were consistently lower than those as-
sociated with correct identifications and scores of four or
greater were largely associated with correct identifications
(Fig. 7). Taken together, our results suggest that the use of
our biomarker profiles for diagnostic purposes may lead to
the development of a novel diagnostic tool for the laboratory
diagnosis of ASD. Given the heterogeneity of disease mani-
festations and their direct implications for treatment, progno-
sis, and patient’s quality of life, it would be advantageous to
develop laboratory methods that can accurately predict vari-
ous ASD-associated clinical pictures. Therefore, we wanted
to explore the utility of our biomarker profiles in differenti-
ating different levels of disease severity.

The Biomarker Profiles Investigated in the Present
Study Were Not Able to Predict Disease Severity

In addition to assistingwith the initial diagnosis of ASD, having
reliable biomarkers to help quantitate disease severity would
likely inform treatment decisions, facilitate follow-up, and im-
prove prognosis. Therefore, we wanted to determine whether
any of the biomarkers investigated in the current study corre-
lated with either CARS or SRS scores. Both scoring systems
did not correlate with any of the biomarkers studied here, as
demonstrated by Spearman correlation (Fig. 8) and multiple
regression analysis (data not shown). Also, hierarchical cluster-
ing, PCA, and MDS analysis did not show discernible segre-
gation between autistic participants with different disease sever-
ity (Fig. 9). Taken together, our data suggest that predicting
disease severity, at least based on CARS and SRS scores, using
the markers we studied isunlikely to be successful.

Fig. 5 Principal component analysis (PCA) andmultidimensional scaling
(MDS) higher complexity profiles yield better separation of autistic (red)
and control (green) participants. The same autistic and control partici-
pants were analyzed based on profiles composed of five to nine variables.
Both principal component analysis (PCA) and multidimensional scaling

(MDS) were used. To help illustrate the effectiveness of separation in
MDS plots, group compactness was measured by the width of the groups
(red and green dotted arrows) and the distance separating the groups (blue
dotted arrows). Summary of effectiveness of group separation byMDS is
shown in a line graph (bottom right)
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Discussion

In the present study, we examined the potential of nine analytes
in distinguishing autistic patients from healthy controls and in
distinguishing between severe and mild to moderate impair-
ment of the CARS and SRS scores. The data have been previ-
ously analyzed, but in previous analyses, participants with
markedly different observed data from the mean were consid-
ered outliers and were therefore eliminated from further analy-
ses. It is conceivable that biomarker data may differ widely
among autistic patients simply because ASD consists of a di-
verse group of neurodevelopmental conditions with dramatical-
ly different presentations. However, this was not true for all of
the nine biomarkers we tested. For example, the variance in the
healthy control group was ten times that of autistic participants
for serotonin, but the variance for lead was more than three
times higher in the autistic group compared to controls.

Regardless of the amount of variance, none of the data points
stood out as an outlier in dot plots (data not shown). Also, the
variance in healthy versus autistic subjects may vary widely in
different populations and between different markers. Taken to-
gether, we could not develop a convincing rationale for identi-
fying and excluding potential outliers. Therefore, all partici-
pants were included in this study, which might explain the
lower AUC values obtained in this study compared to previ-
ously published work (Alabdali et al. 2014a, b).

Our data show that any of the nine biomarkers tested is
likely useful in predicting the occurrence of ASD, with vita-
min E and GST being the most useful in predicting both
CARS and SRS impairments. We also found dopamine, sero-
tonin, and mercury to be good predictors of the occurrence of
ASD. Predicting the severity of CARS and SRS impairments
was more challenging, with GABA being the most promising
predictor of the severity of SRS impairment and no useful

Fig. 6 A 9-biomarker profile was found to better segregate autistic
patients (red) from healthy controls (green) compared to a 5-biomarker
profile. Segregation of 58 autistic and 32 control participants were tested
using principal component analysis (PCA), multidimensional scaling

(MDS), and hierarchical clustering. Similarity matrices for MDS and
hierarchical clustering were calculated using the Canberra metric.
Missing data were replaced by the corresponding group means
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predictors of CARS impairment were found. It would have
been interesting to test the effect of combining GABA with
additional biomarkers on prediction accuracy, but we did not
have enough participants to test this possibility. We speculate
that the use of biomarkers in this study and other biomarkers
might be more useful in predicting the level of impairments of
individual components, rather than overall CARS and SRS
scores. Additional studies involving larger numbers of partic-
ipants are needed, however, to test this hypothesis.

We have demonstrated that combining multiple variables
into profiles augmented prediction accuracy and that increased
profile complexity is generally associated with high accuracy.
In the current study, we combined multiple variables using
three methods. In the first method, we replaced observed
values of individual variables by the coordinates of the eigen-
vector (or principal component) that explained the most vari-
ance and was responsible for most of the segregation between
groups. This gave us a single value for each participant that

was computed from the multiple variables included in each
analysis. The advantage of this method is the ability to com-
bine variables in a way that is focused on the portion of data
variance that is most relevant to the segregation of the groups
under study. The caveat, however, is the possible loss of in-
formation, which is an inherent disadvantage of data reduction
techniques, including PCA and MDS. The second method
was taken from the work of Abruzzo et al. (2015), which
involved computing a Z-score for individual variables and
combining them by taking the sum of Z-scores (Alessandro
Ghezzo, personal communications). Z-scores describe the re-
lationship between the values of a dataset and the mean.
Specifically, a Z-score of zero indicates that the corresponding
value is equal to the mean, while Z-scores greater than zero
represent the number of standard deviation the corresponding
value is above the mean, and those lower than zero (i.e., neg-
ative Z-scores) indicating the number of standard deviations
the corresponding value is below the mean. Since the mean of

Fig. 7 Library identification
using the Childhood Autism
Rating Scale (CARS) and the
Social Responsiveness Scale
(SRS). Library identification
accurately predicts autistic and
healthy control participants. Rates
of correct identification are shown
using profiles 1 through 9 to
classify healthy control and
autistic participants with impaired
scores on the CARS and the SRS
(top) or using individual
biomarkers to classify healthy
controls and either autistic
participants with impaired CARS
(middle) or those with impaired
SRS scores (bottom). The bar
graphs depict the rates of correct
identification for the healthy
controls and autistic participants,
and the overall rates of correct
identification are indicated on top
of the corresponding bars
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the dataset directly affects the Z-score (see Eq. (2)), input data
should contain equal numbers of all groups. Having more
participants in one group than another will immediately skew
the Z-scores of all variables for which group means are

unequal. For the autistic and control groups, means are un-
equal for all variables tested in this study. Both of these two
methods were used as input into ROC curve analyses. In the
third method, which was used in library-based identification,

Fig. 8 Correlation statistics showed that neither scores on the Childhood Autism Rating Scale (CARS) or the Social Responsiveness Scale (SRS)
correlated with the nine studied biomarkers

98 J Mol Neurosci (2018) 66:85–101



we combined variables using a similarity coefficient. The co-
efficient we used here, Canberra metric, was selected because
it resulted in the best group separation when compared to
other coefficients, such as Pearson correlation, ranked corre-
lation, cosine coefficient, Gower coefficient, and Bray-Curtis
coefficient (data not shown). The Canberra metric computes
the distance between a pair of participants by first computing
the sum of absolute differences between these two participants
for each variable and then dividing by the number of variables
to obtain a mean summarized distance. This coefficient stan-
dardizes all variables by dividing each absolute difference by
the corresponding absolute sum before a grand sum over all
variables is calculated (Eq. (1)).

The use of PC1 to calculate AUCs or a similarity coeffi-
cient in library-based identification led us to conclude that
profiles were superior to individual markers in regard to
prediction accuracy. This conclusion is in agreement with
the conclusion of a previous study, in which six biomarkers
were combined using the sum of Z-scores. This study
showed that prediction accuracy increased when the six var-
iables were combined (Abruzzo et al. 2015). The advantage
of using the sum of Z-scores to combined variables was not
shown in our study. In fact, doing so in our study lowered
prediction accuracy as demonstrated by the UACs. It is note-
worthy that most of our datasets contained unequal numbers
of participants in each of the two groups being compared.
This alone may offer some explanation since this can easily

alter the mean and, thus, the Z-scores, as described above.
We conclude that the discrepancy between the study by
Abruzzo et al. (2015) and ours may be attributable, at least
in part, to the imbalanced groups in our datasets. A clear
advantage of the use of similarity measures and eigenvectors
over the sum of Z-scores is that computing the sum of indi-
vidual Z-scores may conceivably result in cancelation of
group-specific features, while this is not the case with the
other two methods.

We also compared the accuracy of predicting ASD occur-
rence using ROC curves versus using library-based identifica-
tion. ROC curves are widely used in studies addressing the
utility of various biomarkers in clinical practice. One of the
greatest advantages of using ROC curves is the ability to op-
timize a cutoff value taking into account sensitivity, specific-
ity, and clinical considerations specific to each disease.
Raising a cutoff value increases specificity, but often at the
expense of sensitivity (Akobeng 2007; Hajian-Tilaki 2013).
The trade-off between sensitivity and specificity varies ac-
cording to the severity of the illness in question, the treatabil-
ity of this illness, and the consequences of delaying treatment.
High sensitivity might be crucial for illnesses known to cause
devastating consequences if left untreated and, thus, the ben-
efit of early detection may outweigh the harm of reduced
specificity. On the contrary, harsh treatment decision may re-
quire a high level of certainty (or specificity) that such treat-
ment is justified.

Fig. 9 Principal component
analysis (PCA), multidimensional
scaling (MDS), and hierarchical
clustering (HiClust) in disease
severity. Disease severity could
not be predicted using the
biomarkers investigated in the
current study. Principal
component analysis (PCA),
multidimensional scaling (MDS),
and hierarchical clustering
(HiClust) were used to test the
segregation between patients with
severe (purple) and those with
mild to moderate (peach) disease
measured by either the Childhood
Autism Rating Scale (CARS) or
the Social Responsiveness Scale
(SRS) scores. Profile 1 (nine
variables) was used in the
depicted studies, where missing
data were substituted for group
means
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Conclusion

Although we find our results compelling and encouraging of
further investigations, we acknowledge the limitations im-
posed by the limited number of participants. Studies of larger
scale are warranted to verify our findings and move the pro-
posed diagnostic tool to clinical practice.
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