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Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder afflicting about one in every 68 children. It is behaviorally
diagnosed based on a triad of symptoms, including impairment in communication, impairment in sociability and abnormal and
stereotypic behavior. The subjectivity of behavioral diagnosis urges the need for clinical biomarker tests to improve and
complement ASD diagnosis and treatment. Over the past two decades, researchers garnered a broad range of biomarkers
associated with ASD and often correlating with the severity of ASD, which includes metabolic and genetic biomarkers or
neuroimaging abnormalities. Metabolic biomarkers are either involved in key pathways such as a trans-sulfuration pathway or
produced due to the derangement of these pathways in the case of oxidative stress. Recent studies reported several genetic
abnormalities related to ASD, encompassing various mechanisms, from copy number variations (CNVs) and single nucleotide
polymorphisms (SNPs) to chromosomal anomalies. However, it is still premature to consider these genetic variants as true
biomarkers for ASD, due to their low reproducibility and regional-specific nature. Herein, we comprehensively review state of
the art about major biomarkers reported in ASD and the association of some biomarkers with ASD symptoms and severity. It is
important to establish those biomarkers to be able to help in the diagnosis and to optimize the treatment of ASD.
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Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental
disorder affecting between 1 and 2% of children worldwide
(CDC - Centers for Disease Control and Prevention, 2018)
and is characterized by impairment in social communica-
tion and abnormality in the relationship with external

inputs, leading to a stereotypic behavior (Saad et al.,
2015a, b).

Epidemiological studies have pointed out that diverse pre-
natal, perinatal, and childhood environmental exposures in-
crease the risk for ASD (Atladóttir et al. 2010; Stoltenberg
et al. 2010; Roberts et al. 2013; Surén et al. 2013; Zerbo
et al. 2017). Continued pollution exposure from the
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environment (toxic metals, strong oxidizing agents, pesti-
cides, herbicides, photosensitizers, etc.) (Hepel and
Stobiecka 2011; Stobiecka et al. 2011; Hepel et al. 2012),
ionizing radiation or UV light, besides to the consequent gen-
eration of reactive oxygen species (ROS) in many metabolic
and biochemical processes, have a major role in damaging
DNA, modifiy lipids, and affect protein functions, all factors
that may elevate the ASD pathogenetic risk, despite the ob-
servation that de novo mutations make up only about 7% of
the ASD population (Shen et al. 2010). Although there is no
general agreement on the ASD pathogenesis, well-documented
data has proposed multiple risk factors associated with ASD
pathogenesis. Some potential etiology agents are composed of
fetal hypoxia, bleeding during pregnancy, diet and medication
used during the prenatal period, gestational diabetes, obstetric
complications, and maternal or paternal age (Meguid et al.
2017; Bjørklund et al. 2018b). Also, mutations in related genes
of fetal neurodevelopment, as well as an increase in the chro-
mosomal abnormalities which are associated with the paternal
or maternal age, could be related with ASD pathogenesis
(Goddard et al. 2016; Kourtian et al. 2017; Bjørklund et al.
2018b). Chromosomalmutations could occur through the spon-
taneous or induced by environmental agents such as exposures
to heavy metal-derived toxicants (Roberts et al. 2013;
Pietropaolo et al. 2017). Furthermore, a recent study revealed
that an imbalance between glutamaergic and GABAergic neu-
rotransmission and GABAergic play an important role in prev-
alent in ASD cases (Al-Otaish et al. 2018).

Several recent studies also indicate that some combination of
gastrointestinal (GI) factors (Horvath et al. 1999; Fung et al.
2017; Kang et al. 2017), immunological factors (Careaga and
Ashwood 2012), and heavy metal toxicity (Grandjean and
Landrigan 2006; Kern and Jones 2006; Fujiwara et al. 2016),
as well as metabolic abnormalities including dysfunctional neu-
rotransmitter systems (McDougle et al. 2005; Zafeiriou et al.
2009) and oxidative stress (Main et al. 2010), all play an etio-
logical role in ASD and in each individual’s ASD diagnosis and
prognosis. Evidence supporting that oxidative stress plays an
etiological role in ASD, including (a) increased lipid peroxida-
tion (Ming et al. 2005; Yui et al. 2016), (b) altered antioxidant
enzymes in the plasma (Yorbik et al. 2002) and mitochondrial
dysfunction (Oliveira et al. 2005), and (c) genetic factors
(Cohen et al. 2003; Hovatta et al. 2005; Rahbar et al. 2016),
has been recently reported. The brain is especially sensitive to
oxidative stress because of its (1) higher energy requirements,
(2) higher levels of lipids and iron, (3) significant levels of auto-
oxidized catecholamines, and (4) lower concentrations of spe-
cific endogenous antioxidant molecules. Mitochondrial func-
tion plays a critical role in ASD progression and pathogenesis.
Therefore, mitochondrial dysfunction has been highlighted in
ASD individuals because of an abnormality in carbohydrate
metabolism (Endreffy et al., 2016) and neurobiological subtype
(Rossignol and Frye 2012; Goh et al. 2014; El-Ansary et al.

2018a, b). According to numerous studies, mitochondria are
critical for many basic cellular activities throughout the body
and its dysfunction known as an important candidate for a main
cellular abnormality that could induce disturbances in different
organ and physiological systems (Goh et al. 2014). This would
suggest that biomarkers, being able to shed light on brain func-
tion, might give insightful information about ASDpathogenesis
and progression.

Changes in Cerebral Perfusion as a Biomarker

Cerebral imaging techniques have disclosed hypoperfusion in
many areas of the brain in patients diagnosed with ASD
(Bjørklund et al. 2018a). Reduced fusion has been found both
by using positron emission tomography (PET) or single-
photon emission computed tomography (SPECT). The
hypoperfused areas include prefrontal, frontal, temporal, oc-
cipital, and parietal cortices and also other brain regions
(Bjørklund et al. 2018a). Correlations between symptom
scores and hypoperfusion have indicated that the greater the
autism symptom pathology, the more significant is the cere-
bral hypoperfusion or vascular pathology in the brain
(Zilbovicius et al. 2006; Bjørklund et al. 2018a). It has been
proposed that brain inflammation and vascular inflammation
may explain a part of the hypoperfusion.

Inflammatory Biomarkers

Numerous studies have been reported a wide range of evi-
dence of inflammation and/or immune dysregulation in ASD
individuals (Reichelt et al. 2012; Rossignol and Frye 2012;
Depino 2013; Bjørklund et al. 2016), including lipid impair-
ment, which have been associated with ASD severity
(Rossignol and Frye 2012; Qasem et al. 2018). Furthermore,
recent studies have indicated a role for gestational maternal
infection and innate immune responses to infection in the
pathogenesis of at least some cases of ASD (Hornig et al.
2018). It has also been presumed that intolerances for gluten
and casein act as triggers for inflammations and thus contrib-
ute to the pathogenesis (Whiteley et al. 2013). Also, an in-
crease of pro-inflammatory cytokines (Xu et al. 2015) and
expression of genes regulating inflammatory pathways in
brain regions (Vargas et al. 2005; Li et al. 2009; Wei et al.
2012) and in cerebrospinal fluid (CSF) have been reported in
ASD individuals (Chez et al. 2007; Li et al. 2009). Below,
some of these inflammatory biomarkers are discussed.

TNF-α

Tumor necrosis factor-α (TNF-α) is one of the cytokines that is
produced by interactions between immune system cells and the
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CNS (Ren and Dubner 2010). TNF-alpha is a polypeptide that
plays a significant role in brain immune and inflammatory ac-
tivities (Feuerstein et al. 1994). It is known to affect hormone
release, neural activity, and normal autonomic function as well
as to modify patients’ behaviors. TNF-α plays an important
role in synaptic pruning and it modulates cell death and neural
cell proliferation (Schmidt et al. 2011). Studies find that TNF-α
is elevated in the plasma, in the cerebral spinal fluid, and in the
brains of children with ASD (Chez et al. 2007; Li et al. 2009).
Increased serum levels of TNF-α have also been reported in
ASD children to correlate with serum levels of adipokines such
as visfatin and resistin (Ghaffari et al. 2016). A relationship
between ASD and obesity has also been reported (Hill et al.
2015). Recent reports have outlined that children with ASD had
significantly higher odds of overweight and obesity than control
subjects (Broder-Fingert et al. 2014).

IL-6

Interleukin-6 (IL-6) is a neuropoietic cytokine that exerts dif-
ferent effects on neural proliferation, survival, synapse forma-
tion, differentiation, and migration. The pathway in the mater-
nal immune system activation, which may be associated with
a subsequent diagnosis of ASD in a child, is affected by IL-6
(Woods et al. 2010). Also, IL-6 plays a critical role in eleva-
tion and modulating autism-like behaviors via impairments in
neuronal circuit balance, synapse formation and dendritic
spine development (Hegazy et al. 2015). The brain is inher-
ently sensitive to oxidative stress because of its (1) higher
energy requirements, (2) higher levels of lipids and iron, (3)
significant levels of auto-oxidized catecholamines, and (4)
lower concentrations of specific endogenous antioxidant mol-
ecules as compared to other organs and tissues. Clinical and
laboratory findings suggest that those with ASD diagnosis
have a BBB that is more permeable than the BBB in
neurotypical individuals. The high autoimmune titers to
CNS proteins that have been found in those diagnosed with
ASD (Vojdani et al. 2002) suggest abnormal exposure of their
immune system to brain antigens via a “leaky” (more perme-
able) BBB (or by chemicals present in injected drugs that
increase BBB permeability). The role of IL-6 in brain devel-
opment is crucial (Gumusoglu et al. 2017), and this could be a
sufficient motive to further investigation of the fundamental
role of this cytokine in ASD (Wei et al. 2012).

Oxidative Stress Biomarkers

A hypothesis explaining ASD onset and progression involves
increased oxidative stress (Deth et al. 2008; Yui et al. 2016),
which might also be associated with neuroinflammation and
hypoperfusion. Oxidative stress markers may be of inorganic
or organic nature. 8-Oxo-deoxyguanosine, a marker of DNA

insult, and malondialdehyde, a byproduct of lipid peroxida-
tion, are the most common organic markers of oxidative stress
(Rose et al. 2012; Bjørklund and Chirumbolo 2017). There are
also many other DNA adducts and lipid derivatives that are
considered potential biomarkers. Among the inorganic bio-
markers is a high copper/zinc ratio, which appears to be a
useful indicator of oxidative stress (Brack et al. 2013; Brack
et al. 2016). Possible biomarkers of lipid peroxidation, such as
the 4-hydroxy-2-nonenal (HNE), have been identified in ex-
perimental animals, and the largest amount of them originates
from the ω-oxidation of 4-hydroxy-2-nonenoic acid (HNA)
and 9-hydroxy-HNA (Alary et al. 1998). Much more often,
urinary derivatives of NO metabolism can be associated with
oxidative stress-mediated lipid peroxidation (Ciancarelli et al.
2003). Finding robust lipid peroxidation urinary biomarkers
whose levels are uniquely linked to the diagnosis of ASD still
presents a fundamental research goal (Ming et al. 2005;
Damodaran and Arumugam 2011).

Vitamins

Even metabolites of certain vitamins and dietary digestive
catabolites can be possible biomarkers of oxidative response
for ASD diagnosis. Increased vulnerability to oxidative stress
could impair vitamin D metabolism (Saad et al., 2015a, b;
Saad et al. 2016). Vitamin D deficiency has been recently
related to ASD (Saad et al. 2016; Chirumbolo et al. 2017;
Saad et al. 2018) focusing on mutations in the vitamin D
receptor gene (Li et al. 2009). The metabolism of vitamin
B12 may be a potential cause for severe and irreversible dam-
age, particularly in the nervous system, and, thus, it should
exert a major action in the development of ASD and its clinics
(James et al. 2004; Meguid et al. 2011). Inborn errors of me-
tabolism or, more recently, propionic acidemia (also known as
propionic aciduria, propionyl-CoA carboxylase deficiency,
and ketotic glycinemia), an autosomal recessive metabolic
disorder that poisons the liver, seem to be found in about 5%
of patients with ASD diagnosis (Manzi et al. 2008). Screening
for the levels of urinary creatine, guanidinoacetate, and creat-
inine as biomarkers for guanidinoacetate methyltransferase or
creatine transporter deficiencies should be considered for early
dietary intervention in those diagnosed with ASD (Wang et al.
2010; Witters et al. 2016). Also, recently, it has been reported
that vitamin D could be applied as a promising biomarker for
the early diagnosis of ASD (Saad et al. 2016; El-Ansary et al.
2018; Saad et al. 2018).

Thioredoxins

Thioredoxins (TRXs) are multifunctional and ubiquitous pro-
teins having a redox (reduction/oxidation)-active disulfide/
dithiol within their metabolically conserved active site
(Jikimoto et al. 2002). TRXs have been reported to possess
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multiple biological functions (Tinkov et al. 2018) and to reg-
ulate various cellular functions via thiol redox control
(Nakamura et al. 1996). The gene that encodes for TRXs has
a cysteine-regulatory element (Taniguchi et al. 1996) that
strongly can be induced by oxidative stress due to various
oxidative agents, ultraviolet irradiation, and ischemic reperfu-
sion. The most important biological activities of TRXs, which
rely on human diseases, include inflammation modulating,
anti-apoptotic growth promoting, and antioxidant functions.
The system using TRXs for redox control is also involved in
many cellular processes, including DNA synthesis, transcrip-
tional regulation, cell-cell communication (Oliveira and
Laurindo 2018; Tinkov et al. 2018), and cell signaling
(Lillig and Holmgren 2007). Overexpression of thioredoxin
reductase (TrxR) indicates that oxidative stress may be an
etiological factor in ASD (Al-Gadani et al. 2009). Zhang
et al. (2015) reported that elevated serum concentrations of
TRXs aggregates have potential as an independent diagnostic
biomarker for ASD.

Prooxidants and Antioxidants

Nitrous oxide (NO) is a potentially poisonous free radical that
can react with superoxide anion and release cytotoxic
peroxynitrite anions (ONOO−). Chauhan and Chauhan
(2006) reported that NO affects the development and function
of the CNS. Past papers reported that its roles include involve-
ment in (a) neurite growth, memory, and learning (Hölscher
and Rose 1992); (b) neurotransmitter release (Lonart et al.
1992); (c) macrophage-mediated cytotoxicity (Hibbs Jr. et al.
1988); and (d) synaptogenesis (Truman et al. 1996). Some
years later, it has been discussed the connection of nitrogen
species, including ammonia, in ASD (Nasrat et al. 2017). This
relationship has suggested some author about a possible rela-
tionship with neuromodulators, due to the altered oxidative
stress response (Tostes et al. 2012). The release of NO, as well
as the expression of inducible nitric oxide synthase (iNOS) is
known to induce inflammatory processes. Inflammatory cyto-
kines like interferon (IFN)-γ, TNF-α, and IL-1 mediated in-
duction of iNOS (Zoroglu et al. 2004). Söğüt et al. (2003)
suggested that the activation of NOS and the elevation NO
levels in red blood cells may be found in patients diagnosed
with ASD. Also, Sweeten et al. (2004) reported increased
plasma levels of nitrite and nitrate in subjects having ASD
diagnosis. Those researchers also observed a positive correla-
tion between nitrates and IFN-γ levels in patients with ASD,
indicating that increased NO level might be correlated with
IFN-γ activity in those with ASD. Elevated oxidative stress
and lowered activity of receptors sensitive to NO have been
reported in patients diagnosed with ASD.

Additionally, NO toxicity decreased the level of choliner-
gic receptors found in the cortex of patients with ASD diag-
nosis (Perry et al. 2001). Treatment with cholinergic agonists

was reported to diminish behavioral abnormalities in those
having ASD diagnosis (Hardan and Handen 2002). In other
studies, oxidative stress was found to reduce the level of
gamma-aminobutyric acid receptors in the hippocampus of
patients with an ASD diagnosis (Blatt et al. 2001). Xanthine
oxidase (XO) is an endogenous pro-oxidant that generate su-
peroxide radicals through the transformation of xanthine to
uric acid (Chauhan and Chauhan 2006). Elevated XO activity
has been found in the erythrocytes of subjects diagnosed with
ASD (Zoroglu et al. 2004). Ceruloplasmin (a copper-
transporting protein) is a major antioxidant protein that is syn-
thesized in the brain. It prevents the peroxidation ofmembrane
lipids stimulated by metal ions, such as copper and iron
(Menezo et al. 2016). Ceruloplasmin also acts like superoxide
dismutase and ferroxidase. In red blood cell membranes, it
protects polyunsaturated fatty acids from active oxygen spe-
cies (Prandota 2010). Transferrin (an iron-transporting pro-
tein) has an antioxidant activity through the reduction of the
concentration of free ferrous ion (Fe2+) by oxidizing it to ferric
ion (Fe3+) (Prandota 2010). Ferrous ion contributes to oxida-
tive stress via the Fenton reaction, which catalyzes the trans-
formation of hydrogen peroxide into extremely toxic hydroxyl
radicals. Also, Fe3+protoporphyrin (heme) is also found in the
subunits of the catalase enzyme (Chauhan and Chauhan
2006). Recent studies have reported that children with ASD
diagnosis have low levels of ceruloplasmin and transferrin in
their serum compared to their neurotypical siblings. The trans-
ferrin levels were decreased in 84% of children with ASD
diagnosis when their levels were compared to those concen-
trations in their neurotypical siblings. Additionally, cerulo-
plasmin levels were decreased in 68% of children with ASD
diagnosis compared to its level in their unaffected siblings.
Moreover, the levels of transferrin and ceruloplasmin were
further reduced in children having ASD diagnosis who had
also lost acquired language skills (Chauhan et al. 2004).

Lipofuscin

Lipofuscin is a term indicating the yellow to brown-
pigmented granules of oxidized lipid-containing residues from
the lysosomal degradation of cross-linked protein, which nor-
mally forms in tissue due to age-related oxidative damage and
is another important biomarker in ASD (Wegiel et al. 2012). In
the CNS, lipofuscin forms in the hippocampus and the pyra-
midal and non-pyramidal neurons of the cortical brain (Kim
et al. 2002). It can be induced experimentally by strong oxi-
dants such as kainic acid and iron III. The existence of
lipofuscin with injurious agents and specific subcellular com-
ponents may provide an indicator of neuropathogenesis that
has been associated with oxidized mitochondrial DNA in
Alzheimer’s disease (Hirai et al. 2001). Lipofuscin was greater
in areas of the autistic cortical brain related with language and
communication (McGinnis 2004).
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Plasma F2t-Isoprostanes

The marker that is considered most practical to indicate
redox dysfunction is plasma F2t-isoprostanes (F2-IsoPs).
In ASD patients, F2t-isoprostanes may increase and have
even found to be higher in those with gastrointestinal dys-
function (Gorrindo et al. 2013). The level of F2t-
isoprostanes (F2-IsoPs) can also be measured in the urine
(Goldani et al. 2014) and two studies have found elevated
F2t-isoprostanes levels in the urine in ASD (Ming et al.
2005).

Plasma 3-Chlortyrosine

3-Chlortyrosine (3CT) in the plasma gives information about
the activity of myeloperoxidase in the presence of reactive
nitrogen species and is a recognized biomarker of the patients’
response to chronic inflammatory conditions. Reportedly, the
plasma 3CT levels are elevated as those diagnosed with ASD
mitochondrial dysfunction grow older but are not elevated in
those diagnosed with ASD who do not have mitochondrial
dysfunction (Frye et al. 2013b).

3-Nitrotyrosine

3-Nitrotyrosine (3NT) is an indicator of chronic immune
system activation and neuron death caused by oxidative
protein damage. Research has shown that the plasma levels
of 3NT in ASD patients with mitochondrial dysfunction
correlate with behavior, cognitive function, and develop-
ment of the disorder. However, this is not the case for those
without mitochondrial dysfunction (Frye et al. 2013a;
Goldani et al. 2014).

Neopterin

Neopterin is a urine marker for immune system activation and
dysfunction. There have been found a correlation between the
urine neopterin level and excess production of ROS, and that
concentration has been suggested as a measurement of the
oxidative stress level of the immune system. Some studies
have shown that ASD children have significantly higher urine
neopterin concentrations than neurotypical controls (Sweeten
et al. 2004; Zhao et al. 2015). The severity of the patient’s
ASD diagnosis, behavioral symptoms, and regressive onset
have been correlated withmicroglial cell activation and chron-
ic inflammation caused by oxidative stress. The diagnosis of
ASD has also been correlated with altered pro-inflammatory
cytokines, chemokines, complement proteins, growth factors,
and adhesion molecules (Streit 2000).

Heavy Metals

In the physiology runtime of daily life, fundamental
macroelements are calcium (Ca), magnesium (Mg), sodium
(Na), and potassium (K) while about 22 other elements are
in trace quantities (microelements). Usually, trace elements
play a role in enzymes, catalytic processes, or different com-
plex molecules, as the function of cobalt (Co) in vitamin B12.
Generally, a trace element is considered as such if the human
body needs less than 200 mg/day of that element (Schofield
2016). Past reports have shown the existence of at least 40 case-
control studies that investigated the level of potentially toxic
metals in a total of 2089 subjects with ASD versus 1821 healthy
controls, by measuring their levels in peripheral blood, urine,
hair, nails, teeth, and even brain samples (Rossignol et al.
2014). Nineteen of these studies reported higher levels of toxic
metals (Adams et al. 2006; Yasuda and Tsutsui 2013; Rossignol
et al. 2014; Vasquez 2017). Heavy metals can cause birth
(postnatal) neurological defects, abnormal fetal development, be-
havioral abnormalities, and immune dysfunctions (El-Ansary
et al. 2011a; Karri et al. 2016). Many heavy metals have their
typical pattern in ASD (Skalny et al. 2017a, b). For instance,
some trace elements like zinc, manganese, molybdenum, alumi-
num, and selenium were found to be deficient, while it can be
found an excess of some elements like copper, lead,mercury, and
cadmium (Mostafa et al. 2016a, b; El-Ansary et al., 2017; Geier
et al., 2014; Skalny et al. 2017a, b). Manganese is for humans an
essential trace element. However, it is also a neurotoxin of con-
cern for industrial workers, pregnant women, and children
(Schofield 2016; Bjørklund et al. 2017).

There are some recently suggested theories grounding the
mechanisms underlying these changed concentrations. One of
the most crucial is the inadequate maternal intake and malab-
sorption in mothers before pregnancy and during pregnancy,
as well as an inadequate intake and malabsorption of new-
borns and infants. One of the possible mechanism is harmful
toxin exposures in mothers (employment-related hazards,
smoking, alcohol, and illicit drug abuse). Use of certain med-
icines during pregnancy can also be a source of toxicity. On
the other hand, there might be a defective excretion what leads
to accumulation of certain heavy metals (Saldanha Tschinkel
et al., 2018). Abnormalities in gastrointestinal permeability,
disturbances of the blood-brain barrier, and placenta are also
possible pathogenetic mechanisms of ASD. Some heavy
metals such as mercury, lead, and arsenic can destruct cells
through the biochemical process by the production of adverse
effects such as depleting glutathione, increasing oxidative
stress, impairing cellular signaling, and neurodevelopmental
disorders (Li et al. 2007; Hassan et al. 2018).

Many physiologists in recent years have highlighted the
link between ASD symptoms and plasma concentrations of
trace elements such as copper, selenium, and zinc (El-Ansary
et al., 2017a, b), and because of the evidence that the impaired
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homeostatic regulation of trace elements, their potential neu-
rotoxicity and their levels in the bloodstream are involve in the
etiology of persons who are diagnosed with ASD (Grabrucker
et al. 2013; Tschinkel et al. 2018). Moreover, several studies
have suggested a disturbance in the copper and zinc metabo-
lism in ASD (Bjørklund 2013; Li et al. 2014; Crăciun et al.
2016). Zinc has an important role in the immune system. Also,
it is crucial in enzyme function, the metabolism of nucleic
acid, growth, and finally cellular repair, most importantly in
newborns and pregnant women. Deficiency of zinc is linked
to delays in the development, malabsorption, and immune
dysregulation (Walker and Black 2004). Copper plays many
important roles in mechanisms of cell propagation and growth
(Leary et al. 2009). Copper and zinc are also functional antag-
onists. The normal zinc to copper ratio in children and adults is
close to 1:1 (Van Weyenbergh et al. 2004). Previous studies
showed that zinc deficiency, elevated copper levels, and,
therefore, low zinc/copper ratio are common in ASD children
(Faber et al. 2009; Bjørklund 2013; Li et al. 2014; Macedoni-
Lukšič et al. 2015; Crăciun et al. 2016). Low zinc/copper ratio
can also cause neurological impairment and liver dysfunction
in ASD children. Also, a study revealed that ASD children did
not show a significant difference in the micro-nutrient intake
as associated to their metabolic state, dietary habit, and resi-
dent geographical area, although a slight difference in the
phosphorus and magnesium levels was recovered because of
sex difference (Tschinkel et al. 2018). Furthermore, it is well-
known that high mercury levels cause toxicity (Mostafa et al.,
2016b, Saldanha et al., 2018) and this could be reflected in the
zinc/copper ratio (Bjørklund, 2013). Low zinc/copper ratios
can be associated with total body zinc deficiency or accumu-
lation of toxic metals.

Trans-sulfuration Biomarkers

The methionine cycle and trans-sulfuration pathway are inter-
dependent, where cystathionine β-synthase enzyme catalyzes
the irreversible conversion of homocysteine—the metabolite
with re-methylation potential in methionine cycle—into cys-
tathionine, thus, initiating the trans-sulfuration pathway.
Under optimal conditions and oxidative stress, the trans-
sulfuration pathway provides the cells with sulfur and cyste-
ine, the availability of which determines the rate of glutathione
synthesis. The levels of trans-sulfuration metabolites are al-
tered in ASD (Geier et al. 2009; Belalcázar et al. 2013).

Homocysteine and Cysteine

Plasma and urine levels of homocysteine were significantly
elevated presumably due to the deficiencies of folate and vi-
tamins B12 and B6 in ASD (Kałużna-Czaplińska et al. 2013;
Han et al. 2015). Such abnormal high levels of homocysteine

were positively correlated with the severity of ASD especially
the impaired communication domain. The high levels of ho-
mocysteine can contribute to ASD symptomatology (Ménézo
e t a l . 2011 ) . A l so , l ow me th ion ine o r l ow S-
adenosylmethionine could induce DNA hypomethylation,
which causes brain dysfunction (Puig-Alcaraz et al. 2015).

By contrast, cysteine levels were decreased in individuals
with ASD especially in patients with severe autistic features
(ElBaz et al. 2014). The homocysteinemia reported in ASD
may arise from (a) inadequate dietary intake/absorption of
cysteine amino acid (Kałużna-Czaplińska et al. 2017a, b),
(b) higher consumption of sulfate, and/or (c) lower activity
of cystathionine lyase (Main et al. 2012). Melnyk et al.
(2012) found that the extracellular redox ratio between free
cysteine and its oxidized form cystine (Cys/Cys-S) is signifi-
cantly lower in ASD due to increased oxidation of cysteine
concomitant with oxidative damage of DNA and proteins in
the studied ASD patients. They concluded that under chronic
oxidative stress, the trans-sulfuration pathway is unable to
support its extracellular (cysteine/cystine) and intracellular
(GSH/GSSG) redox balance (Melnyk et al. 2012).
Reportedly, the administration of N-acetylcysteine provides
sufficient levels of the amino acid cysteine and enhanced glu-
tathione synthesis (Wink et al. 2016). Although the available
data for its therapeutic potency is spoiled by the low statistical
power of the N-acetylcysteine in the improvement of symp-
toms of irritability, different formulations of N-acetylcysteine,
small sample sizes, different dosage regimens, and short du-
ration (Naveed et al. 2017). Taurine is another sulfur-
containing amino acid involved in the trans-sulfuration path-
way; it is considered a biomarker for ASD due to its altered
levels in the urine and plasma (Tu et al. 2012; An and Gao
2015). Furthermore, it has been reported that amino acid dys-
regulation metabotypes could be used as promising bio-
markers for early diagnosis and individualized treatment for
subtypes of ASD patients (Kałużna-Czaplińska et al. 2017a;
Kałużna-Czaplińska et al. 2017b). The combination of gly-
cine, glutamine, and ornithine amino acid dysregulation
metabotypes (AADM) showed a dysregulation in amino
acid/branch chain amino acids metabolism (leucine, isoleu-
cine, and valine) that is seen in 16.7% of the ASD patients
of Children’s AutismMetabolome Project with a specificity of
96.3% and a positive predictive value of 93.5%. This may
present disruption of the mTORC1 system which may be an
underlying reason for decreased levels of free plasma branch
chain amino acids metabolism.

Oxidized and Reduced Glutathione

The redox ratios of glutathione (GSSG/GSH) in ASD showed
alteration in many metabolic and postmortem brain studies
due to the abnormal elevation of oxidized glutathione and
concomitant decrease of reduced glutathione (GSH) levels;
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this redox imbalance can represent a biomarker for ASD path-
ophysiology (Castejon and Spaw 2014). NADPH deficiency
may increase the oxidized glutathione and thus induce gluta-
thione redox imbalance (Adams et al. 2006; Adams et al.
2011) The abnormally high levels of 3-nitrotyrosine, a bio-
marker of protein oxidative damage, was also correlated with
the increased percentage of oxidized glutathione in ASD. As
mentioned before, a dual shift toward oxidized state was re-
ported in the major extracellular and intracellular redox
buffers (cysteine and glutathione respectively) reflecting the
poor redox homeostasis in ASD (Melnyk et al. 2012).
Transdermal and oral glutathione supplementation enhanced
the plasma levels of four trans-sulfurationmetabolites inASD:
sulfate, cysteine, reduced glutathione, and taurine (Kern et al.
2011). Vargason et al. (2017) developed amathematical model
for the metabolites and reactions involved in trans-sulfuration
pathway in ASD and found that the first step in glutathione
synthesis, that is catalyzed by glutamate-cysteine ligase
(GCL), is a critical parameter in the whole pathway because
it determines the stability of metabolites’ concentrations
(Vargason et al. 2017). The cerebella of ASD individuals have
compromised GCL activity (Gu et al. 2013a). Moreover,
Meguid et al. (2017) reported a significant low gene expres-
sion of the catalytic and modifier subunits of the enzyme
(GCLC and GCLM respectively) in the peripheral blood of
ASD subjects.

Sulfate

Sulfur-containing amino acids such as cysteine are the major
source of sulfates in the human diet, which represent essential
minerals that are notoriously deficient in ASD. Presumably,
low ATP levels contribute to the deficiency of free and total
plasma sulfate in ASD. Correlation analysis showed that se-
vere ASD cases had the lowest levels of sulfate suggesting
that essential minerals deficiency may underlie ASD severe
manifestation (Adams et al. 2011). Sulfate deficiency and the
subsequent reduction in heparin sulfate levels impair
neurodevelopment and cause brain structural abnormalities
in ASD (Pérez et al. 2016). Hartzell and Seneff (2012) hy-
pothesized that the prenatal and postnatal exposure to xenobi-
otics depletes sulfate and other sulfur metabolites, thus, con-
tributing to neurological damage and ASD. They also recom-
mended the administration of sulfur-rich diets and dietary sup-
plements to alleviate autistic symptoms (Hartzell and Seneff
2012).

Hormonal Biomarkers and Obesity

The imbalance in secretion and/or activity of hormones direct-
ly affects social behavior and may explain the endocrine ab-
normalities sometimes reported in ASD (De Luca 2016). For

example, maternal obesity (BMI ≥ 30) has been found to be
associated with ASD risk (Skalny et al. 2016), and paternal
obesity was even more associated with increased autism risk
(Surén et al. 2014). However, the role of endocrine system
abnormalities in the etiopathogenesis of ASD is still unclear
(Tareen and Kamboj 2012).

Cortisol or Stress Hormone

The elevation of cortisol (stress hormone) in hair and saliva
samples has been recently reported in ASD both with and
without a stressful stimulus. Such elevation is positively cor-
related with stronger ASD symptoms (Ogawa et al. 2017).
Individuals diagnosed with ASD also showed higher cortisol
peaks upon subjected to a stressor, and they needed a longer
period than normal individuals did to recover from cortisol
elevation (Spratt et al. 2012). Baron-Cohen et al. (2015) found
cortisol elevated levels in amniotic fluids of pregnant women
who gave birth to males diagnosed with ASD. They suggested
that this stress biomarker might play an early yet unknown
role during fetal development implicated with ASD (Baron-
Cohen et al. 2015).

Sex Hormones

In the study mentioned above, Baron-Cohen et al. (2015) also
reported the elevation of sex steroid hormones (testosterone,
progesterone, and androstenedione) in amniotic fluids where
the source of these elevations may be maternal, fetal, or envi-
ronmental. They may act as an epigenetic factor that contrib-
utes to the development of ASD (Baron-Cohen et al. 2015).
The male bias of autism prevalence can be possibly explained
by the interaction between genetic factors and sex hormones
(Romano et al. 2016). For instance, RORA—an ASD-
associated gene—is differently regulated by male and females
sex hormones; the deficiency of RORA gene product in the
brain was positively correlated with higher testosterone levels
in ASD (Hu et al . 2015). Pregnant women with
hyperandrogenemia and polycystic ovary syndrome (PCOS),
negatively affect the fetal brain development, thus, contribut-
ing to autistic symptoms in the born children (Palomba et al.
2012).

Geier et al. (2012) report that there is evidence of
hyperandrogenism in a group of individuals diagnosed with
ASD result that is supported by several studies in the field of
the mood and behavioral framework, CNS pathology, and cell
biology pre- and postnatal serum levels of androgens (Geier
et al. 2012). For example, in ASD patients the relative mean
levels of testosterone in serum (158%), free testosterone in
serum (214%), percent free testosterone (121%), androstene-
dione (173%), and DHEA (192%) were significantly in-
creased compared to the reference means (Geier and Geier
2007). In patients with ASD, levels of androgens increased,
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an evidence which might be linked to the cyclic interaction
between the trans-sulfuration and the androgen pathways
(Geier and Geier 2007).

Oxytocin and Arginine Vasopressin

Oxytocin is a neurohormone that mediates procreation in the
brain and enables the social and cognitive skills. Early defec-
tive oxytocin system, therefore, can underlie the social com-
munication deficits peculiar to ASD (Quattrocki and Friston
2014). Alabdali et al. (2014) reported lower plasma oxytocin
levels in ASD subjects, especially severe cases, as compared
to neurotypical participants. Epigenetics studies revealed that
oxytocin levels in ASD are associated with targeting in the
promoter region of the oxytocin receptor (OXTR) gene, which
is methylated in individuals diagnosed with ASD (Alabdali
et al. 2014). This epigenetic modification can contribute to
the autistic social and behavioral phenotypes (Kumsta et al.
2013).

Moreover, three genetic variants of OXTR have been im-
plicated in ASD; these variants occur in three different regions
of the gene: intron 3, 3′ 3′-UTR, and an intergenic region.
Both intron 3 and 3′ 3′-UTR polymorphisms were also corre-
lated with the impaired social domain of ASD (Campbell et al.
2011). Intranasal oxytocin spray can enhance the sociability of
ASD diagnosed individuals (Yatawara et al. 2016). Since oxy-
tocin indicates the social abilities in both ASD and non-ASD
subjects, arginine vasopressin (AVP)—also known as
antidiuretic hormone (ADH)—can be used specifically as a
blood-based biomarker for ASD social interaction domain
(Carson et al. 2015).

Additionally, the elevation of AVP in girls diagnosed with
ASD is related to increased stress-related repetitive behaviors
(Miller et al. 2013). The derangement of AVP signaling in the
brain, especially in males, may be a risk factor for ASD
(Carson et al. 2015). However, the mechanism of this sex-
dependent dimorphism is yet unknown and needs extensive
investigations (Miller et al. 2013). Based on data from previ-
ous studies, Rutigliano et al. (2016) concluded that AVP could
be promising in enhancing sociability in ASD. They, however,
cautiously interpreted OXTand AVP implications in ASD due
to the contradictory results obtained in different studies
(Rutigliano et al. 2016).

Serotonin

Serotonin hormone is involved in brain development and
modulation of behavior. The high level of serotonin in the
blood (hyperserotonemia) was the first biological marker in
ASD (Muller et al. 2016). A common ASD-associated gain-
of-function mutation in serotonin re-uptake transporter
(SERT) gene led to hyperserotonemia and altered the commu-
nication and social domains in knock-in mice (Veenstra-

VanderWeele et al. 2012). However, serotonin depletion in
the brain of another group of rodent models induced the
well-known autistic phenotype: repetitive behaviors and de-
fective social and communication abilities (Kane et al. 2012).
The level of serotonin in patients diagnosed with ASD varies
spatially, where the brain and CSF show abnormally lower
serotonin levels, while platelets and blood cells show
hyperserotonemia (Ratajczak and Sothern 2015). For in-
stance, Adamsen et al. (2014) found significant low levels of
serotonin in CSF of ASD participants as indicated by the level
of its end product—i.e., 5-hydroxindolacetic acid. Individuals
with ASD have inherited and de novo gene variants associated
with the serotonergic system and abnormal serotonin signal-
ing (Adamsen et al. 2014; Chen et al. 2017). The gestational
elevation of cortisol may upregulate the SERT expression and
subsequently increases serotonin levels during a critical period
of fetal neural development, thus contributing to ASD onset
(Rose’Meyer 2013).

Mitochondrial Dysfunction Biomarkers

The implication of mitochondrial dysfunction in ASD has
long been studied. A systematic review estimated that mito-
chondrial dysfunction was present in about 5% of the patients
with ASD (Rossignol and Frye 2012). However, when the
empirical evidence is examined, the percentage of ASD indi-
viduals with mitochondrial dysfunction also appears to be
generated by xenobiotics and environmental pollutants. For
example, (Siddiqui et al., 2016; Goldenthal et al. 2015) exam-
ined 92 children with ASD and 68 controls for skeletal muscle
mitochondrial enzyme deficiencies in respiratory complex
(RC) activities (I and IV). RC-I/RC-IV activity ratio was sig-
nificantly increased in 64% of the entire ASD cohort including
76% of those more severely affected (Goldenthal et al. 2015).
Weissman et al. (2008) examined 25 ASD patients and found
that levels of lactate in the peripheral blood, plasma alanine
levels, and serum concentrations of ALT and/or AST were
increased in 76%, 36%, and 52% of patients, respectively.
They also reported that the most common disorder in the elec-
tron transport chain was caused by deficiencies of complex I
(64%) and complex III (20%) (Weissman et al. 2008).

Elevation of lactate, pyruvate, alanine, and ammonia are
reported in ASD and considered by Rossignol and Frye
(2012) as additional markers of ASD-associated mitochondri-
al dysfunction. The five complexes of electron transport chain
(ETC) responsible for the production of ATP exhibited low
activity in the brain of ASD subjects (Gu et al. 2013).
Likewise, pyruvate dehydrogenase, a key enzyme in mito-
chondrial oxidative phosphorylation, showed underactivity
and implication in ASD mitochondrial dysfunction (Gu et al.
2013). In addition to their low activity, the five ETC com-
plexes have low expression levels in autistic brains
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specifically in the cerebellum and the frontal and temporal
cortices. These brain regions then showed abnormally high
concentrations of lipid peroxides suggesting that the low ex-
pression of ETC complexes induces oxidative stress (Chauhan
et al. 2011). Goldenthal et al. (2015) analyzed buccal swaps
obtained fromASD subjects and reported significant deficien-
cies in mitochondrial respiratory complexes I and IV (RC-I
and RC-IV); they suggested that these enzymes can serve as
non-invasive biomarkers for ASD patients with concomitant
mitochondrial dysfunction (Goldenthal et al. 2015). Oxidative
stress can induce mitochondrial dysfunction in ASD, where
ROS depletes the reserve capacity of mitochondria and in-
creases both proton-leak and ATP-linked respiration.
However, the supplementation of N-acetylcysteine (glutathi-
one precursor) prevents these adverse effects of ROS on mi-
tochondria, suggesting that glutathione-impaired metabolism
can be a contributor to such abnormal mitochondrial reserve
capacity in ASD (Rose et al. 2014). Many studies examined
postmortem brain tissues to study mitochondrial dysfunction
in ASD. Saad et al. (2016) suggested the use of neuroimaging
techniques that enable the researchers to determine metabolic
mitochondrial biomarkers in ASD in a non-invasively way.
For instance, brain imaging revealed high lactate (a potential
biomarker of mitochondrial dysfunction) in ASD especially in
the cingulate gyrus region (Goh et al. 2014).

Genetic studies reported mitochondrial (mtDNA) abnor-
malities in 23% of individuals with ASD and comorbid mito-
chondrial dysfunction (Rossignol and Frye 2012). Since the
mtDNA is maternally inherited, Yoo et al. (2017) quantified
the mtDNA of ASD patients and their normal siblings, and
they found in peripheral blood cells a significantly larger copy
number of mtDNA in ASD subjects. Important throughput
analysis of mitochondria can help us to comprehend the role
of mitochondrial impairment in ASD (Patowary et al. 2017).
These copy number variants occur in three genes encoding
complex I and complex III subunits: ND1, ND4, and Cyt b,
where the mitochondrial Cyt b gene copy number variant
showed significant linkage to language and communication
domains in ASD. These three mitochondrial genes showed
higher copy numbers also in postmortem frontal cortex tissues
obtained from subjects with ASD; also, these tissues showed
deletions in ND4 and Cyt b genes (Gu et al., 2013). The ele-
vation of mtDNA copy number in ASD may reflect (a) over-
replication of mtDNA as a compensatory mechanism or (b)
decreased degradation of mtDNA (Chen et al. 2015).

In ASD, xenobiotics and environmental pollutants may
also generate mitochondrial dysfunction (Wong and Giulivi
2016). The short-chain fatty acids (SCFA) formed by ASD-
associated opportunistic bacteria in the gut can derange the
carnitine metabolism and subsequently alter mitochondrial
function (MacFabe 2015). The elevation of short and long
chains of acyl-carnitines causes acyl-carnitine profile abnor-
malities in human and animal models with ASD and provides

potential biomarkers for mitochondrial dysfunction in ASD
(Frye et al. 2013a).

Cerebral Folate Receptor Autoantibodies
in Autism Spectrum Disorder

Awide range of studies demonstrated that maternal hyperho-
mocysteinemia and the status of folate is related to early fetal
loss during pregnancy (Rogers 2008; Surén et al. 2013). The
incidence of infants born with open tube neural defect has
been reduced via the improvement of maternal folate nutri-
tional status by a fortified diet, natural diet, and or supplemen-
tation before and during pregnancy. In a study, the concentra-
tions of folate receptor autoantibodies in the serum of 93 ASD
children were measured and were reported an elevated preva-
lence of folate receptor autoantibodies (75.3%) (Frye et al.
2013b). Also, the syndrome of cerebral folate deficiency is
related with a neurometabolic disorder that described by low
contents of 5-methyltetrahydrofolate (5MTHF) in the CSF,
although the normal levels of systemic folate were seen
(Ramaekers et al. 2002). Six studies have reported ASD pa-
tients in a subset of children with cerebral folate deficiency
(Ramaekers and Blau 2004; Moretti et al. 2005; Ramaekers
et al. 2005; Ramaekers et al. 2007; Moretti et al. 2008;
Ramaekers et al. 2008). Most of these ASD children showed
decline functioning and remarkable neurological abnormali-
ties (Moretti et al. 2005; Ramaekers et al. 2007). The deficits
in folate levels in CNS of ASD patients could explain numer-
ous findings in these patients, although the related biological
pathways are not known. On the other hand, folate levels were
normal in peripheral tissues, indicating cerebral folate defi-
ciency which the treatment with folinic acid-related CSF ab-
normalities could improve motor skills (Moretti et al. 2005).

Porphyrin Biomarkers

Porphyrins are intermediate metabolites formed during heme
synthesis through enzymatic steps. Heavy metals can hamper
these enzymatic reactions, and the backlogged porphyrin de-
rivatives are excreted in urine; therefore, porphyrinuria is an
indirect indicator of heavy metal burden in tissues (Wang et al.
2011). Bjørklund (2013) attributed the persistence of heavy
metals in ASD patients mainly to their poor detoxification
capacity. The majority of xenobiotic researchers considered
that mercury might contribute to the etiopathology of ASD
(Kern et al. 2016). Specific porphyrins, particularly pre-
coproporphyrin and coproporphyrin in urine, may indicate
toxic metal poisoning. In a study by Macedoni-Lukšič et al.
(2015), the coproporphyrin III in the urine was marginally
lower in ASD children, compared to individuals with other
neurological diseases. Children with ASD from different
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ethnic populations showed high levels of urinary mercury-
associated porphyrins (coproporphyrins, precoproporphyrins,
and pentacarboxyporphyrins), whereas the chelation treatment
lowered the urinary coproporphyrins and precoproporphyrins
concentrations (Kern et al. 2014). Khaled et al. (2016) found
that the higher the mercury intoxication in plasma, the higher
the urinary concentrations of uroporphyrin, pentacarboxypor-
phyrin, hexacarboxyporphyrin, coproporphyrin, and
precoproporphyrin in ASD.

Moreover, the concentrations of coproporphyrins and
precoproporphyrin were linearly related to the severity of
ASD (Khaled et al. 2016). The porphyrin urinary export asso-
ciated with mercury toxicity is higher even in ASD than that in
neurotypical individuals who live within the same residential
region (Kern et al. 2011). Likewise, ASD and neurotypical
children with the same history of mercury exposure through
diet, vaccines, and/or dental amalgam fillings showed compa-
rable levels of urinary mercury and different urinary porphyrin
profile, where children with ASD have significantly higher
concentrations of pentacarboxyporphyrin, hexacarboxypor-
phyrin, and coproporphyrin (Woods et al. 2010). Heyer et al.
( 2012 ) emphas i z ed the impo r t ance o f u r i n a ry
pentacarboxyporphyrin and coproporphyrin measures as pre-
dictors of ASD; however, they attributed them to impaired
porphyrin metabolism rather than a heavy metal burden.
They assume that the perturbation of heme biosynthesis is
mechanistically associated with ASD phenotype (Heyer
et al. 2012). The direct estimation of heavy metal intoxication
in ASD showed (a) significant high urinary levels of toxic
heavy metals such as lead and tin (b) a positive correlation
with ASD symptom severity (Mostafa et al. 2016a), thus,
supporting the results of porphyrin measures (Adams et al.
2017). The fact that factors other than toxic heavy metals
can influence the level of porphyrins in urine should be con-
sidered when taking into account the interpretation of the re-
sults (Macedoni-Lukšič et al. 2015).

Genetic Biomarkers, e.g.,
the Methylenetetrahydrofolate Reductase
Variants

The severity and phenotype of those diagnosed with ASD are
heterogeneous with significant individual differences between
patients (Schaefer and Mendelsohn 2008; Eapen 2011). The
heterogeneity in ASD diagnosed individuals involves both the
locus and allelic heterogeneity (Chaste and Leboyer 2012).
Despite extensive research and some discoveries in genetics,
today there is still not identified any set of genetic differences
that are collectively associated with a diagnosis of ASD. A
genetic correlation with ASD diagnosis has only been
established for a few genetic disorders, such as fragile X syn-
drome, neurofibromatosis, Bourneville-Pringlova disease,

phenylketonuria, and possibly a few other chromosomal irreg-
ularities. Around 15 other genetic abnormalities have a weak
correlation with ASD diagnosis (Kobal 2009).

Identified genetic associations with some groups of chil-
dren with ASD diagnosis have been classified as (a) cytoge-
netically visible chromosomal abnormalities (~ 5%), (b) copy
number variants (CNVs) (i.e., submicroscopic deletions and
duplications) (10–20%), and (c) single-gene disorders (~ 5%).
To date, little evidence has successfully identified the candi-
date genes that are responsible for about 70% of ASD
(Woodbury-Smith and Scherer 2018). However, it is accepted
that epigenetic modifications of genes that cannot be ex-
plained due to changes in DNA sequence are crucial for the
normal development of the brain, behavior, and cognitive
function. In general, the term “epigenetics” refers to stable
heritable traits (or “phenotypes”) that is not possible to explain
due to changes in the DNA sequence in an individual’s genes
(Liu et al. 2011; Sener et al. 2014). Abnormalities in the DNA
methylation may be linked to the ASD diagnosis.

Single nucleotide polymorphisms (SNPs) in the methy-
lenetetrahydrofolate reductase (MTHFR) are known to reduce
the activity of the MTHFR enzyme. Also, the MTHFR gene
may through the folate metabolism play a role in the epige-
netic mechanisms that modify the gene expression leading to
the development of autistic symptoms (Sener et al. 2014). The
MTHFR enzyme function as a catalyzer of 5,10-methylene-
tetrahydrofolate to 5-methyltetrahydrofolate, which is essen-
tial for the metabolization of homocysteine to methionine as
well as the generation of tetrahydrofolate. Common polymor-
phisms in the MTHFR gene can lead to the accumulation of
homocysteine, which causes folate deficiency and various in-
juries like DNA and vascular damage (Sener et al. 2014).

Folate and MTHFR polymorphisms are related to several
neural tube defects and have are linked to the pathogenesis of
numerous diseases and disorders, including leukemia, colorec-
tal disorders, cardiovascular disease, vascular disease, cancer,
schizophrenia, depression, glaucoma, migraine with aura,
Down syndrome, as well as other congenital abnormalities
(Gilbody et al. 2006; Jamil 2014). MTHFR is highly polymor-
phic in the general population. More precisely, the MTHFR
gene is located on chromosome 1 (cytogenetic location:
1p36.3). It is expressed in various tissues including the brain,
muscle, liver, and stomach. The two most common mutations
(SNPs) in the MTHFR gene lead to the production of an
MTHFR enzyme that does not work as well as in normal,
C677T, and A1298C enzymes. The polymorphism nucleotide
677 causes alanine to valine (C → T) substitution. MTHFR
polymorphism can also lead to a change of glutamate to alanine
(A→C) at position 1298, which influences the specific activity
of the enzyme and results in elevated homocysteine levels, and
a reduction in the plasma folate concentration but to a lesser
extent than the C677T polymorphism (Jamil 2014). Evidence
suggests a link between polymorphisms of the MTHFR
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enzyme and the risk to get a child with ASD could be crucial for
both prevention and the development of treatments of ASD.
The conclusions from the studies have been contradictory in
some cases, due to the multifactorial nature of the disorders
and our inability to identify the multiple genetic, epigenetic,
and environmental factors that interact with the MTHFR en-
zyme’s polymorphisms (Lacasaña-Navarro et al. 2006).

Also, several other mutation in those genes that encode some
functional members of protein families involved in cell signal-
ing, cell adhesion, and synaptic function or plasticity—e.g.,
SHANK, neurexins, neuroligin proteins, glutamate receptors,
BDNF, and KIRREL3, together TOR and FMRP signaling
pathways, have been strongly associated with the causative
hypotheses associated with the symptoms exhibited by those
diagnosed with ASD. All these proteins play a role in the com-
plex network of proteins related to synaptic function and have
been specifically involved in those symptoms associated with
ASD. Other genes, such as CHD8, TCF4, andMBD5were also
present a complex picture from both the neurobiological and
clinical perspectives. Numerous biological pathways yet con-
tribute to this disorder, and many of the putatively associated
“ASD” genes possess a wider etiological role in human psy-
chopathology (Talkowski et al. 2014). It is still unclear how
these proteins might involve a final commonly shared model
of ASD related to synaptic dysfunction, given that their role in
gene regulation is yet not specifically linked to synapse-related
proteins. The relationship betweenASD and other developmen-
tal phenotypes are currently well identified in several CNV,
BCR, and GWAS investigations. One field of study is to define
whether clear endophenotypes have distinct genetic etiologies,
which are embedded among this broader group of disease phe-
notypes. Another chance is to define the genetic modifiers or
any further environmental effect that may epigenetically predis-
pose a subject toward specific phenotypic outcomes. The
SHANK3 gene is one of the genes that control synaptic mole-
cules and has a specific epigenetic control mechanism (Beri
et al. 2007; Talkowski et al. 2014). The survival of an organism
is dependent on the ability of adaption to different environmen-
tal factors. Therefore, the influence of epigenetics is more com-
mon than alterations in the DNA sequence. More research is
needed to understand the genetics and epigenetics of ASD. The
novelty of the strong association between ASD and genes in-
volved in epigenetics give the possibility to explore potential
environmental influences on such regulation (Siniscalco et al.
2013; Talkowski et al. 2014).

Receiver Operating Characteristic Curves
in Evaluating the Diagnostic Values
of Biomarkers for Autism Spectrum Disorder

With the move toward development of biomarkers directed
treatment strategies of ASD, there is a need for more specific

diagnosis. Most commonly diagnostically, the accuracy mea-
sured for a biomarker is calculated for its sensitivity and spec-
ificity. Sensitivity is defined as the part of the patients who
correctly are categorized to have disease among patients who
truly have the disease. Specificity is similarly the part of the
patients who correctly are categorized as not having the dis-
ease among all the participants who truly do not have the
disease. Most of the diagnostic biomarkers give results on a
continuous scale. Therefore, the specificity and sensitivity of
the biomarker depending on the specific threshold that is se-
lected (Metz 1986). Receiver operating characteristic (ROC)
analysis is used in clinical research to measure how accurately
diagnostic biomarkers can discriminate between two patient
states, “diseased” and “non-diseased” (Swets 1986). A ROC
curve is based as a separator, on which data for the diseased
and non-diseased participants form a pair of overlapping dis-
tributions (Metz 1986). The complete separation of the two
underlying distributions means a perfectly discriminating bio-
marker, while complete overlap means failed discrimination
(Swets 1979; Metz 1986).

Its advantages include testing accuracy across the entire
range of scores and thereby not requiring a predetermined
cut-off point, also, to easily examined visual and statistical
comparisons across tests or scores, and, finally, independence
from outcome prevalence. Further, ROC curve analysis is a
useful tool for evaluating the accuracy of a statistical model
that classifies subjects into one of two categories. In the field
of biomarkers in ASD, ROC curve should become a statistical
tool to identify the biomarkers that are sufficiently specific and
sensitive to confirm the ASD diagnosis, while further studies
are needed on its usefulness regarding prognosis, evaluation
of risk assessment, and therapeutic interventions. When ROC
curves are appropriately used, they can help ASD researchers
improving both their research on biomarkers, as well as the
presentation of the results (Wieand et al. 1989; Søreide 2008).

The area under the curve (AUC) is useful for comparing
various biomarkers. An AUC value that is close to one indi-
cates that it is a very good predictive marker. If the curve is
near the diagonal, this shows that it is not diagnostic useful.
An AUC value that is close to 1.00 is a satisfactory value of
both specificity and sensitivity of the tested biomarker (Metz
1986; Perlis 2011). With regard to the diagnostic of ASD, a
high sensitivity indicates that ASD in most of the cases is
present. And, when the specificity is high, only a few or none
of the healthy participants will test positive for the diagnostic
marker. More predictiveness values can be recorded using
ROC analysis combined with two or more distinct parameters
(Yang et al. 2015). This suggests that a combination of differ-
ent markers should be used rather than a single marker.
Among the most predictive neurotransmitter markers reported
in ASD serotonin, dopamine, oxytocin, and GABA recorded
high AUC with remarkably high sensitivity and specificity
(AUC values of 1.00, 0.981, 0.968, and 0.881) (Alabdali
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et al. 2014). Among the pro-oxidant/antioxidant markers,
GSH/GSSG, total glutathione, thioredoxins, peroxiredoxin,
thioredoxin reductase, and isoprostane recorded high predic-
tive value with AUCs of almost 1 (Al-Yafee et al. 2011; El-
Ansary et al. 2011a; El-Ansary and Al-Ayadhi 2012; Zhang
et al. 2015). Relative concentrations of fatty acids also report-
ed high diagnostic values using ROC analysis as a diagnostic
tool. AA/DHA and (EPA)/AA, together with phospholipids
PE, PS, and PC, show high predictive values while linoleic
acid/AA and EPA/DHA and omega 6/omega 3 show no utility
as biomarkers for the early diagnosis of ASD (Ghezzo et al.
2013; Adamsen et al. 2014; El-Ansary and Al-Ayadhi 2014).
The use of ROC analysis may allow selecting proper inflam-
matory markers to assess satisfactory diagnostic parameters in
the evaluation of AUCs values between 0.85 and 1.00.
Among these are HSP-70, TGF-β, caspase-7 and caspase-3,
IL-6, INF-γ, interferon-γ-induced protein-16, leukotriene,
PGE2, TNF-α, neopterin, and lipoxin A4 (El-Ansary et al.
2011b, c; Yan et al. 2015; Zhao et al. 2015). Among the toxic
metabolites, while urinary phthalate (MEHP, 5-OH-MEHP,
and 5-oxo-MEHP) did not demonstrate good predictive values
(AUCs around 0.65), zinc/copper, lead, amyloid beta (1–40),
and (1–42) recorded good diagnostic values (0.8–0.9). Among
the cations, Ca2+, K+, Ca2+/Mg2+, and Na+/K+ show good
diagnostic values.

Since the human brain is complex, a single marker does not
have sufficient diagnostic power. Therefore, to improve the
diagnostic accuracy, it is important to combine a panel of
markers (Hsu and Hsueh 2013). Among different combination
approaches, the multiple regressions are perfect tools to un-
derstand and interpret the relationship between different re-
corded markers. It is a common statistical technique to assess
the relationships between two or more independent variables
and their correlation with a dependent variable. Screening of
this panel of markers in newborns at risk for neurodevelop-
mental disease (e.g., ASD) can help in the early diagnosis and
intervention. In a recent data manuscript, El-Ansary (2016)
was able to understand the relationship between oxidative
stress and glutamate excitotoxicity as two important etiologi-
cal mechanisms in ASD. Stepwise multiple regression analy-
ses using glutamate, glutamine, and glutamate/glutamine ratio
as three dependent variables and Trx1, Trx-reductase, Prx I
and III, glutathione-s-transferase, mercury, and GSH/GSSG as
independent variables were helpful to understand how these
two signaling pathways are collectively involved in the etiol-
ogy of ASD.

Yang et al. (2015) reported that the combination of Il-6 and
serotonin produced the best sensitivity and specificity in the
diagnosis of ASD. More recently, El-Ansary et al. (2017b)
concluded that, in spite of the excellent diagnostic value of
ROC analysis in the evaluation of the discriminating power of
energy metabolism and pro-oxidant/antioxidant related
markers, the combination of Na+/K+ (ATPase), vitamin C,

glutathione, and glutathione peroxidase, and lipid peroxides
produced an accurate sensitivity and specificity for the diag-
nosis of ASD. They suggested that the use of logistic regres-
sion and combining ROC as a simple clinical method that
might help in the early diagnosis of ASD (El-Ansary et al.,
2017a, b). Ogawa et al. (2017) reported that for ROC analysis
to measure the predictive value of stress hormones as bio-
markers to discriminate between ASD children and neurotyp-
ical children, large sample numbers in both groups is of crit-
ical importance. Although they obtained high AUC and satis-
factory specificity and sensitivity, their study does not suggest
the use of salivary (sCORT) and hair (hCORT) cortisol as
biomarkers of diagnosis because of the small sample they used
(Ogawa et al. 2017).

Concluding Remarks

The many biomarkers above are possible research items to
develop and enhance the research of ASD to earn insightful
diagnostic biomarkers for this complex pathology. There is no
consensus on the etiopathogenetic mechanisms underlying the
onset and development of ASD; however, some fundamental
hypotheses would suggest that ASD is a neurodevelopmental
disorder, affecting behavior, cognition, andmood, with a close
relationship with the impaired gut/brain axis and the metabolic
regulation of energy disposal, and dysregulation of the im-
mune network. Neuroinflammation and the impaired
astrocytes-neuron communication is a consequence of this
imbalance. Some stressors, such as xenobiotics, pollutants,
heavy metals, can elicit and exacerbate this mechanism.
Although there is currently not a single highly predictive bio-
marker to diagnose and follow up ASD, some possible candi-
dates have been put forth.
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